Characterizing nilpotent Leibniz algebras by their multiplier

被引:1
|
作者
Hosseini, Seyedeh Narges [1 ]
Edalatzadeh, Behrouz [2 ]
Salemkar, Ali Reza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Math, Tehran, Iran
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah, Iran
基金
美国国家科学基金会;
关键词
Non-Abelian tensor product; Nilpotent Leibniz algebras; Leibniz homology;
D O I
10.1016/j.jalgebra.2021.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize all finite dimensional nilpotent Leibniz algebras L for which (dim(L))(2) - dim(HL2(L)) <= 12. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:356 / 370
页数:15
相关论文
共 50 条
  • [1] Characterizing Nilpotent n-Lie Algebras by Their Multiplier
    Hamid Darabi
    Mehdi Eshrati
    Homayoon Arabyani
    Results in Mathematics, 2021, 76
  • [2] Characterizing Nilpotent n-Lie Algebras by Their Multiplier
    Darabi, Hamid
    Eshrati, Mehdi
    Arabyani, Homayoon
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [3] Characterizing nilpotent Leibniz algebras by a new bound on their second homologies
    Edalatzadeh, Behrouz
    Hosseini, Seyedeh Narges
    JOURNAL OF ALGEBRA, 2018, 511 : 486 - 498
  • [4] The c-nilpotent Schur Lie-multiplier of Leibniz algebras
    Biyogmam, G. R.
    Casas, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 138 : 55 - 69
  • [5] On characterizing nilpotent Lie algebras by their multiplier, s(L)=4
    Shamsaki, Afsaneh
    Niroomand, Peyman
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) : 259 - 272
  • [6] On the dimension of the c-nilpotent Schur Lie-multiplier of Leibniz algebras
    Biyogmam, Guy R.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1091 - 1098
  • [7] A Characterization of Nilpotent Leibniz Algebras
    Alice Fialowski
    A. Kh. Khudoyberdiyev
    B. A. Omirov
    Algebras and Representation Theory, 2013, 16 : 1489 - 1505
  • [8] On nilpotent and simple Leibniz algebras
    Albeverio, S
    Ayupov, SA
    Omirov, BA
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) : 159 - 172
  • [9] A Characterization of Nilpotent Leibniz Algebras
    Fialowski, Alice
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (05) : 1489 - 1505
  • [10] NILPOTENT LIE AND LEIBNIZ ALGEBRAS
    Ray, Chelsie Batten
    Combs, Alexander
    Gin, Nicole
    Hedges, Allison
    Hird, J. T.
    Zack, Laurie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2404 - 2410