Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations

被引:120
|
作者
Casas, Eduardo [1 ]
Raymond, Jean-Pierre
机构
[1] Univ Cantabria, ETSI Ind & Telecomunicac, Dept Matemat Aplicada & Ciencias Computac, Santander 39071, Spain
[2] Univ Toulouse 3, CNRS, UMR 5640, Lab MIP, F-31062 Toulouse 4, France
关键词
Dirichlet control; semilinear elliptic equation; numerical approximation; error estimates;
D O I
10.1137/050626600
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The control is the trace of the state on the boundary of the domain, which is assumed to be a convex, polygonal, open set in R-2. Piecewise linear finite elements are used to approximate the control as well as the state. We prove that the error estimates are of order O(h(1-1/p)) for some p > 2, which is consistent with the W-1-1/p,W-p(Gamma)-regularity of the optimal control.
引用
收藏
页码:1586 / 1611
页数:26
相关论文
共 50 条