Solving Hamilton-Jacobi-Bellman equations by a modified method of characteristics

被引:46
|
作者
Huang, CS
Wang, S [1 ]
Teo, KL
机构
[1] Univ Western Australia, Dept Math & Stat, Perth, WA 6009, Australia
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Peoples R China
关键词
optimal feedback control; Hamilton-Jacobi-Bellman equation; finite difference method; viscosity solution; characteristic method;
D O I
10.1016/S0362-546X(00)85016-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of Hamilton-Jacobi-Bellman (HJB) equations is derived by viscosity approximation. The first-order hyperbolic HJB equation is perturbed as a convection-diffusion equation by adding a diffusion term with a small diffusion coefficient/viscosity and is solved by a modified method of characteristics (MMOC) in time and a finite difference in state space. An algorithm is designed to decouple the value and control functions. Numerical results show that MMOC is efficient for solving non-trivial HJB equations and that the transition layer parameters a and b are dimension-independent. Thus, the method is promising for solving real-world optimal control problems via HJB equations.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 50 条
  • [1] Modified domain decomposition method for Hamilton-Jacobi-Bellman equations
    Guang-hua Chen
    Guang-ming Chen
    Zhi-hua Dai
    [J]. Applied Mathematics and Mechanics, 2010, 31 : 1585 - 1592
  • [2] Modified domain decomposition method for Hamilton-Jacobi-Bellman equations
    陈光华
    陈光明
    戴智华
    [J]. Applied Mathematics and Mechanics(English Edition), 2010, 31 (12) : 1585 - 1592
  • [3] Modified domain decomposition method for Hamilton-Jacobi-Bellman equations
    Chen, Guang-hua
    Chen, Guang-ming
    Dai, Zhi-hua
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (12) : 1585 - 1592
  • [4] Hamilton-Jacobi-Bellman Equations
    Festa, Adriano
    Guglielmi, Roberto
    Hermosilla, Christopher
    Picarelli, Athena
    Sahu, Smita
    Sassi, Achille
    Silva, Francisco J.
    [J]. OPTIMAL CONTROL: NOVEL DIRECTIONS AND APPLICATIONS, 2017, 2180 : 127 - 261
  • [5] Solving Hamilton-Jacobi-Bellman equations by an upwind finite difference method
    Wang, S
    Gao, F
    Teo, KL
    [J]. PROGRESS IN OPTIMIZATION: CONTRIBUTIONS FROM AUSTRALASIA, 2000, 39 : 255 - 268
  • [6] ON THE HAMILTON-JACOBI-BELLMAN EQUATIONS
    LIONS, PL
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (01) : 17 - 41
  • [7] Solving Elliptic Hamilton-Jacobi-Bellman Equations in a Value Space
    Qiu, Wenhao
    Song, Qingshuo
    Yin, George
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 55 - 60
  • [8] METHOD OF THE CAUCHY CHARACTERISTICS AND GENERALIZED SOLUTIONS OF THE HAMILTON-JACOBI-BELLMAN EQUATIONS
    SUBBOTINA, NN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1991, 320 (03): : 556 - 561
  • [9] Alternating direction algorithms for solving Hamilton-Jacobi-Bellman equations
    Sun, M
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1996, 34 (03): : 267 - 277
  • [10] DOMAIN DECOMPOSITION ALGORITHMS FOR SOLVING HAMILTON-JACOBI-BELLMAN EQUATIONS
    SUN, M
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (1-2) : 145 - 166