Compactly supported correlation functions

被引:178
|
作者
Gneiting, T [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
关键词
fractal dimension; isotropic; kriging; long-memory dependence; powered exponential model; positive-definite; random field; Whittle-Matern class;
D O I
10.1006/jmva.2001.2056
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes compactly supported correlation functions, which parameterize the smoothness of the associated stationary and isotropic random field. The constructions are straightforward, and compact support is relevant for various ends: computationally efficient spatial prediction, fast and exact simulation, and appeal among practicioners. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:493 / 508
页数:16
相关论文
共 50 条
  • [1] Compactly supported radial covariance functions
    G. Moreaux
    [J]. Journal of Geodesy, 2008, 82 : 431 - 443
  • [2] Compactly supported radial covariance functions
    Moreaux, G.
    [J]. JOURNAL OF GEODESY, 2008, 82 (07) : 431 - 443
  • [3] Estimating sensitivity indices based on Gaussian process metamodels with compactly supported correlation functions
    Svenson, Joshua
    Santner, Thomas
    Dean, Angela
    Moon, Hyejung
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 144 : 160 - 172
  • [4] EFFICIENT EMULATORS OF COMPUTER EXPERIMENTS USING COMPACTLY SUPPORTED CORRELATION FUNCTIONS, WITH AN APPLICATION TO COSMOLOGY
    Kaufman, Cari G.
    Bingham, Derek
    Habib, Salman
    Heitmann, Katrin
    Frieman, Joshua A.
    [J]. ANNALS OF APPLIED STATISTICS, 2011, 5 (04): : 2470 - 2492
  • [5] Regular implementation in the space of compactly supported functions
    Avelli, D. Napp
    Shankar, Shiva
    Trentelman, H. L.
    [J]. SYSTEMS & CONTROL LETTERS, 2008, 57 (10) : 851 - 855
  • [6] Multivariate compactly supported C°° functions by subdivision
    Charina, Maria
    Conti, Costanza
    Dyn, Nira
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 70
  • [7] COMPACTLY SUPPORTED FUNDAMENTAL FUNCTIONS FOR SPLINE INTERPOLATION
    DAHMEN, W
    GOODMAN, TNT
    MICCHELLI, CA
    [J]. NUMERISCHE MATHEMATIK, 1988, 52 (06) : 639 - 664
  • [8] COMPACTLY SUPPORTED FUNCTIONS GENERATED BY A POLYHARMONIC OPERATOR
    Kolodyazhny, V. M.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2006, 42 (05) : 730 - 742
  • [9] SOBOLEV FUNCTIONS WITHOUT COMPACTLY SUPPORTED APPROXIMATIONS
    Veronelli, Giona
    [J]. ANALYSIS & PDE, 2022, 15 (08): : 1991 - 2002
  • [10] Compactly supported orthogonal symmetric scaling functions
    Belogay, E
    Wang, Y
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 7 (02) : 137 - 150