Ribonucleotide and ribonucleoside determination by ambient pressure ion mobility spectrometry

被引:9
|
作者
Kanu, Abu B. [1 ]
Hampikian, Greg [2 ]
Brandt, Simon D. [3 ]
Hill, Herbert H., Jr. [1 ]
机构
[1] Washington State Univ, Dept Chem, Pullman, WA 99164 USA
[2] Boise State Univ, Dept Biol & Criminal Justice, Boise, ID 83725 USA
[3] Liverpool John Moores Univ, Sch Pharm & Biomol Sci, Liverpool L3 3AF, Merseyside, England
关键词
Electrospray ionization; Ion mobility spectrometry; Nucleotides; Detection limit; Resolving power; CAPILLARY-ELECTROPHORESIS; MASS SPECTROMETRY; RESOLVING POWER; DNA NUCLEOTIDES; AMINO-ACIDS; QUANTIFICATION; SPECIFICITY; NUCLEOSIDES; SEPARATION; ADDUCTS;
D O I
10.1016/j.aca.2009.10.058
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Detection limits and reduced mobilities for 12 ribonucleoticles and 4 ribonucleosides were measured by ambient pressure electrospray ionization-ion mobility spectrometry (ESI-IMS). With the instrument used in this study it was possible to separate some of these compounds within mixtures. Detection limits reported for ribonucleotides and ribonucleosides ranged from 15 to 300 pmol and the reduced mobilities ranged from 41 to 56 Suggesting that ambient pressure ESI-IMS may be used for their rapid and sensitive separation and detection. This report demonstrates that it was possible to use ion mobility spectrometry (IMS) to obtain a spectrum for the separation of nucleotides and nucleosides in less than 1 min. The application holds great promise for nucleotide analysis in the area of separating DNA fragments in genome sequencing and also for forensics DNA typing examinations used for the identification of blood stains in crime scenes and paternity testing. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:91 / 97
页数:7
相关论文
共 50 条
  • [1] Ambient Pressure Inverse Ion Mobility Spectrometry Coupled to Mass Spectrometry
    Liu, Wenjie
    Davis, Austen L.
    Siems, William F.
    Yin, Dulin
    Clowers, Brian H.
    Hill, Herbert H., Jr.
    ANALYTICAL CHEMISTRY, 2017, 89 (05) : 2800 - 2806
  • [2] Paper spray ionization with ion mobility spectrometry at ambient pressure
    Sukumar, H.
    Stone, J. A.
    Nishiyama, T.
    Yuan, C.
    Eiceman, G. A.
    INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY, 2011, 14 (2-3) : 51 - 59
  • [3] TABLE OF REDUCED MOBILITY VALUES FROM AMBIENT PRESSURE ION MOBILITY SPECTROMETRY
    SHUMATE, C
    STLOUIS, RH
    HILL, HH
    JOURNAL OF CHROMATOGRAPHY, 1986, 373 (02): : 141 - 173
  • [4] Predicting optimal resolving power for ambient pressure ion mobility spectrometry
    Kanu, Abu B.
    Gribb, Molly M.
    Hill, Herbert H., Jr.
    ANALYTICAL CHEMISTRY, 2008, 80 (17) : 6610 - 6619
  • [5] Identity Efficiency for High-Performance Ambient Pressure Ion Mobility Spectrometry
    Kanu, A. Bakarr
    Leal, Anne
    ANALYTICAL CHEMISTRY, 2016, 88 (06) : 3058 - 3066
  • [6] Method validation parameters for drugs and explosives in ambient pressure ion mobility spectrometry
    Sedwick V.
    Massey M.
    Codio T.A.
    Bakarr Kanu A.
    Bakarr Kanu, A. (kanuabb@wssu.edu), 1600, Springer Verlag (20): : 75 - 86
  • [7] Tandem differential mobility spectrometry with ion dissociation in air at ambient pressure and temperature
    Menlyadiev, M. R.
    Tarassov, A.
    Kielnecker, A. M.
    Eiceman, G. A.
    ANALYST, 2015, 140 (09) : 2995 - 3002
  • [8] Determination of terpenes in humid ambient air using ultraviolet ion mobility spectrometry
    Vautz, W
    Sielemann, S
    Baumbach, JI
    ANALYTICA CHIMICA ACTA, 2004, 513 (02) : 393 - 399
  • [9] Analysis of a drift tube at ambient pressure: Models and precise measurements in ion mobility spectrometry
    Eiceman, GA
    Nazarov, EG
    Rodriguez, JE
    Stone, JA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (09): : 3610 - 3621
  • [10] Reactive Tandem Ion Mobility Spectrometry with Electric Field Fragmentation of Alcohols at Ambient Pressure
    Shokri, Hossein
    Vuki, Maika
    Gardner, Ben D.
    Niu, Hsein-Chi
    Chiluwal, Umesh
    Gurung, Bhupendra K.
    Emery, David B.
    Eiceman, Gary A.
    ANALYTICAL CHEMISTRY, 2019, 91 (09) : 6281 - 6287