SEMI-SUPERVISED SOURCE LOCALIZATION WITH DEEP GENERATIVE MODELING

被引:11
|
作者
Bianco, Michael J. [1 ]
Gannot, Sharon [2 ]
Gerstoft, Peter [1 ]
机构
[1] UCSD, Marine Phys Lab, La Jolla, CA 92093 USA
[2] Bar Ilan Univ, Fac Engn, Ramat Gan, Israel
基金
欧盟地平线“2020”;
关键词
Source localization; semi-supervised learning; generative modeling; deep learning;
D O I
10.1109/mlsp49062.2020.9231825
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a semi-supervised localization approach based on deep generative modeling with variational autoencoders (VAE). Localization in reverberant environments remains a challenge, which machine learning (ML) has shown promise in addressing. Even with large data volumes, the number of labels available for supervised learning in reverberant environments is usually small. We address this issue by perform semi-supervised learning (SSL) with convolutional VAEs. The VAE is trained to generate the phase of relative transfer functions (RTFs), in parallel with a DOA classifier, on both labeled and unlabeled RTF samples. The VAE-SSL approach is compared with SRP-PHAT and fully-supervised CNNs. We find that VAE-SLL can outperform both SRP-PHAT and CNN in label-limited scenarios.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Semi-Supervised Source Localization in Reverberant Environments With Deep Generative Modeling
    Bianco, Michael J.
    Gannot, Sharon
    Fernandez-Grande, Efren
    Gerstoft, Peter
    [J]. IEEE ACCESS, 2021, 9 : 84956 - 84970
  • [2] Semi-Supervised Source Localization in Reverberant Environments with Deep Generative Modeling
    Bianco, Michael J.
    Gannot, Sharon
    Fernandez-Grande, Efren
    Gerstoft, Peter
    [J]. IEEE Access, 2021, 9 : 84956 - 84970
  • [3] Semi-supervised Learning with Deep Generative Models
    Kingma, Diederik P.
    Rezende, Danilo J.
    Mohamed, Shakir
    Welling, Max
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [4] Semi-Supervised Analysis of the Electrocardiogram Using Deep Generative Models
    Rasmussen, Soren M.
    Jensen, Malte E. K.
    Meyhoff, Christian S.
    Aasvang, Eske K.
    Sorensen, Helge B. D.
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1124 - 1127
  • [5] A Semi-supervised Deep Generative Model for Human Body Analysis
    de Bem, Rodrigo
    Ghosh, Arnab
    Ajanthan, Thalaiyasingam
    Miksik, Ondrej
    Siddharth, N.
    Torr, Philip
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 500 - 517
  • [6] Learning Disentangled Representations with Semi-Supervised Deep Generative Models
    Siddharth, N.
    Paige, Brooks
    van de Meent, Jan-Willem
    Desmaison, Alban
    Goodman, Noah D.
    Kohli, Pushmeet
    Wood, Frank
    Torr, Philip H. S.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [7] SEMI-SUPERVISED SOURCE LOCALIZATION WITH RESIDUAL PHYSICAL LEARNING
    Bianco, Michael J.
    Gerstoft, Peter
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3608 - 3612
  • [8] Automatic image annotation using semi-supervised generative modeling
    Amiri, S. Hamid
    Jamzad, Mansour
    [J]. PATTERN RECOGNITION, 2015, 48 (01) : 174 - 188
  • [9] Semi-supervised Sequential Generative Models
    Teng, Michael
    Le, Tuan Anh
    Scibior, Adam
    Wood, Frank
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 649 - 658
  • [10] Unbiased Generative Semi-Supervised Learning
    Fox-Roberts, Patrick
    Rosten, Edward
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 367 - 443