Gabor Filters as Feature Images for Covariance Matrix on Texture Classification Problem

被引:0
|
作者
Tou, Jing Yi [1 ]
Tay, Yong Haur [1 ]
Lau, Phooi Yee [1 ]
机构
[1] UTAR, Comp Vis & Inteligent Syst CVIS Grp, Petaling Jaya 46200, Selangor, Malaysia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The two groups of popularly used texture analysis techniques for classification problems are the statistical and signal processing methods. In this paper, we propose to use a signal processing method, the Gabor filters to produce the feature images, and a statistical method, the covariance matrix to produce a set of features which show the statistical information of frequency domain. The experiments are conducted on 32 textures from the Brodatz texture dataset. The result that is obtained for the use of 24 Gabor filters to generate a 24 x 24 covariance matrix is 91.86%. The experiment results show that the use of Gabor filters as the feature image is better than the use of edge information and co-occurrence matrices.
引用
下载
收藏
页码:745 / 751
页数:7
相关论文
共 50 条
  • [1] Use of Gabor filters for texture classification of digital images
    Recio Recio, Jorge A.
    Ruiz Fernandez, Luis A.
    Fernandez-Sarria, Alfonso
    FISICA DE LA TIERRA, 2005, 17 : 47 - 59
  • [2] An Application of Gabor Filters for Texture Classification
    Pavlovicova, Jarmila
    Oravec, Milos
    Osadsky, Michal
    PROCEEDINGS ELMAR-2010, 2010, : 23 - 26
  • [3] Texture classification using Gabor filters
    Idrissa, M
    Acheroy, M
    PATTERN RECOGNITION LETTERS, 2002, 23 (09) : 1095 - 1102
  • [4] Gabor filters for rotation invariant texture classification
    Porter, R
    Canagarajah, N
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1193 - 1196
  • [5] Texture Classification Using Optimal Gabor Filters
    Pakdel, M.
    Tajeripour, F.
    2011 1ST INTERNATIONAL ECONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2011, : 208 - 213
  • [6] Improved Feature for Texture Segmentation Using Gabor Filters
    Li, Chuanzhen
    Zhang, Qin
    APPLIED INFORMATICS AND COMMUNICATION, PT III, 2011, 226 : 565 - 572
  • [7] Improved Feature for Texture Segmentation Using Gabor Filters
    Li, Chuanzhen
    Zhang, Qin
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL III, 2010, : 335 - 338
  • [8] SELECTION OF GABOR FILTERS FOR IMPROVED TEXTURE FEATURE EXTRACTION
    Li, Weitao
    Mao, KeZhi
    Zhang, Hong
    Chai, Tianyou
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 361 - 364
  • [9] New statistics for texture classification based on Gabor filters
    Bandzi, Peter
    Oravec, Milos
    Pavlovicova, Jarmila
    RADIOENGINEERING, 2007, 16 (03) : 133 - 137
  • [10] Comparative evaluation of classical methods, optimized gabor filters and LBP for texture feature selection and classification
    Melendez, Jaime
    Puig, Domenec
    Garcia, Miguel Angel
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2007, 4673 : 912 - 920