Hepatitis B Virus Resistance to Nucleos(t)ide Analogues

被引:682
|
作者
Zoulim, Fabien [1 ,2 ,3 ]
Locarnini, Stephen [4 ]
机构
[1] INSERM, U871, F-69003 Lyon, France
[2] Univ Lyon 1, F-69365 Lyon, France
[3] Hosp Civils Lyon, Serv Hepatol & Gastroenterol, Lyon, France
[4] Victorian Infect Dis Reference Lab, Melbourne, Vic, Australia
基金
美国国家卫生研究院;
关键词
POSITIVE CHRONIC HEPATITIS; MONITORING DRUG-RESISTANCE; CLOSED CIRCULAR DNA; ADEFOVIR DIPIVOXIL THERAPY; NUCLEOSIDE-NAIVE PATIENTS; LINE PROBE ASSAY; LAMIVUDINE THERAPY; IN-VITRO; WILD-TYPE; POLYMERASE MUTATIONS;
D O I
10.1053/j.gastro.2009.08.063
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Patients with chronic hepatitis B (CHB) can be successfully treated using nucleos(t)ide analogs (NA), but drug-resistant hepatitis B virus (HBV) mutants frequently arise, leading to treatment failure and progression to liver disease. There has been much research into the mechanisms of resistance to NA and selection of these mutants. Five NA have been approved by the US Food and Drug Administration for treatment of CHB; it is unlikely that any more NA will be developed in the near future, so it is important to better understand mechanisms of cross-resistance (when a mutation that mediates resistance to one NA also confers resistance to another) and design more effective therapeutic strategies for these 5 agents. The genes that encode the polymerase and envelope proteins of HBV overlap, so resistance mutations in polymerase usually affect the hepatitis B surface antigen; these alterations affect infectivity, vaccine efficacy, pathogenesis of liver disease, and transmission throughout the population. Associations between HBV genotype and resistance phenotype have allowed cross-resistance profiles to be determined for many commonly detected mutants, so genotypig assays can be used to adapt therapy. Patients that experience virologic breakthrough or partial response to their primary therapy can often be successfully treated with a second NA, if this drug is given at early stages of these events. However, best strategies for preventing NA resistance include first-line use of the most potent antivirals with a high barrier to resistance. It is important to continue basic research into HBV replication and pathogenic mechanisms to identify new therapeutic targets, develop novel antiviral agents, design combination therapies that prevent drug resistance, and decrease the incidence of complications of CHB.
引用
收藏
页码:1593 / 1608
页数:16
相关论文
共 50 条