Attention Capsule Network for Aspect-Level Sentiment Classification

被引:3
|
作者
Deng, Yu [1 ]
Lei, Hang [1 ]
Li, Xiaoyu [1 ]
Lin, Yiou [1 ]
Cheng, Wangchi [2 ]
Yang, Shan [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[2] Inst Logist Sci & Technol, Beijing 100166, Peoples R China
[3] Jackson State Univ, Dept Chem Phys & Atmospher Sci, Jackson, MS 39217 USA
关键词
Capsule Network; Convolutional Neural Network; Aspect-level Sentiment Classification; Natural Language Processing; Attention Mechanism; VISION;
D O I
10.3837/tiis.2021.04.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a fine-grained classification problem, aspect-level sentiment classification predicts the sentiment polarity for different aspects in context. To address this issue, researchers have widely used attention mechanisms to abstract the relationship between context and aspects. Still, it is difficult to effectively obtain a more profound semantic representation, and the strong correlation between local context features and the aspect-based sentiment is rarely considered. In this paper, a hybrid attention capsule network for aspect-level sentiment classification (ABASCap) was proposed. In this model, the multi-head self-attention was improved, and a context mask mechanism based on adjustable context window was proposed, so as to effectively obtain the internal association between aspects and context. Moreover, the dynamic routing algorithm and activation function in capsule network were optimized to meet the task requirements. Finally, sufficient experiments were conducted on three benchmark datasets in different domains. Compared with other baseline models, ABASCap achieved better classification results, and outperformed the state-of-the-art methods in this task after incorporating pre-training BERT.
引用
收藏
页码:1275 / 1292
页数:18
相关论文
共 50 条
  • [1] Capsule Network with Interactive Attention for Aspect-Level Sentiment Classification
    Du, Chunning
    Sun, Haifeng
    Wang, Jingyu
    Qi, Qi
    Liao, Jianxin
    Xu, Tong
    Liu, Ming
    [J]. 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 5489 - 5498
  • [2] Aspect-level Sentiment Classification with HEAT (HiErarchical ATtention) Network
    Cheng, Jiajun
    Zhao, Shenglin
    Zhang, Jiani
    King, Irwin
    Zhang, Xin
    Wang, Hui
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 97 - 106
  • [3] Contextual Graph Attention Network for Aspect-Level Sentiment Classification
    Miao, Yuqing
    Luo, Ronghai
    Zhu, Lin
    Liu, Tonglai
    Zhang, Wanzhen
    Cai, Guoyong
    Zhou, Ming
    [J]. MATHEMATICS, 2022, 10 (14)
  • [4] Dependency Parsing and Attention Network for Aspect-Level Sentiment Classification
    Ouyang, Zhifan
    Su, Jindian
    [J]. NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT I, 2018, 11108 : 391 - 403
  • [5] Structurally Enhanced Interactive Attention Network for Aspect-Level Sentiment Classification
    Liang, Chunfeng
    Fu, Yumeng
    Lv, Chengguo
    [J]. 2020 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2020), 2020, : 282 - 287
  • [6] Chinese text dual attention network for aspect-level sentiment classification
    Sun, Xinjie
    Liu, Zhifang
    Li, Hui
    Ying, Feng
    Tao, Yu
    [J]. PLOS ONE, 2024, 19 (03):
  • [7] Two-Stage Attention Network for Aspect-Level Sentiment Classification
    Gao, Kai
    Xu, Hua
    Gao, Chengliang
    Sun, Xiaomin
    Deng, Junhui
    Zhang, Xiaoming
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2018), PT IV, 2018, 11304 : 316 - 325
  • [8] Multi-grained Attention Network for Aspect-Level Sentiment Classification
    Fan, Feifan
    Feng, Yansong
    Zhao, Dongyan
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3433 - 3442
  • [9] Effective Attention Networks for Aspect-level Sentiment Classification
    Huy Thanh Nguyen
    Minh Le Nguyen
    [J]. PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE), 2018, : 25 - 30
  • [10] Interactive Attention Networks for Aspect-Level Sentiment Classification
    Ma, Dehong
    Li, Sujian
    Zhang, Xiaodong
    Wang, Houfeng
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 4068 - 4074