The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis

被引:15
|
作者
Gao, Jin [1 ]
Chaudhary, Ajeet [1 ]
Vaddepalli, Prasad [1 ,3 ]
Nagel, Marie-Kristin [2 ]
Isono, Erika [2 ]
Schneitz, Kay [1 ]
机构
[1] Tech Univ Munich, Wissensch Zentrum Weihenstephan, Entwicklungsbiol Pflanzen, Freising Weihenstephan, Germany
[2] Univ Konstanz, Chair Plant Physiol & Biochem, Dept Biol, Constance, Germany
[3] Wageningen Univ, Lab Biochem, Wageningen, Netherlands
关键词
Clathrin; endocytosis; endomembrane; plants; receptor kinase; STRUBBELIG; tissue morphogenesis; vesicular trafficking; GOLGI NETWORK/EARLY ENDOSOME; PREVACUOLAR COMPARTMENTS; MEMBRANE MICRODOMAINS; MULTIVESICULAR BODIES; MEDIATES ENDOCYTOSIS; TISSUE MORPHOGENESIS; TRAFFICKING PATHWAY; SCRAMBLED RECEPTOR; OVULE DEVELOPMENT; ROOT EPIDERMIS;
D O I
10.1093/jxb/erz190
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB: EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB: EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.
引用
收藏
页码:3881 / 3894
页数:14
相关论文
共 50 条
  • [1] The complement inhibitor, CRIT, undergoes clathrin-dependent endocytosis
    Inal, J
    Miot, S
    Schifferli, JA
    EXPERIMENTAL CELL RESEARCH, 2005, 310 (01) : 54 - 65
  • [2] Clathrin-dependent endocytosis
    Mousavi, SA
    Malerod, L
    Berg, T
    Kjeken, R
    BIOCHEMICAL JOURNAL, 2004, 377 : 1 - 16
  • [3] Role of HRB in Clathrin-dependent Endocytosis
    Chaineau, Mathilde
    Danglot, Lydia
    Proux-Gillardeaux, Veronique
    Galli, Thierry
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (49) : 34365 - 34373
  • [4] Death-receptor activation halts clathrin-dependent endocytosis
    Austin, Cary D.
    Lawrence, David A.
    Peden, Andrew A.
    Varfolomeev, Eugene E.
    Totpal, Klara
    De Maziere, Ann M.
    Klumperman, Judith
    Arnott, David
    Pham, Victoria
    Scheller, Richard H.
    Ashkenazi, Avi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (27) : 10283 - 10288
  • [5] Phosphoinositides Regulate Clathrin-Dependent Endocytosis at the Tip of Pollen Tubes in Arabidopsis and Tobacco
    Zhao, Yan
    Yan, An
    Feijo, Jose A.
    Furutani, Masahiro
    Takenawa, Tadaomi
    Hwang, Inhwan
    Fu, Ying
    Yang, Zhenbiao
    PLANT CELL, 2010, 22 (12): : 4031 - 4044
  • [6] ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis
    Robert, Stephanie
    Kleine-Vehn, Juergen
    Barbez, Elke
    Sauer, Michael
    Paciorek, Tomasz
    Baster, Pawel
    Vanneste, Steffen
    Zhang, Jing
    Simon, Sibu
    Covanova, Milada
    Hayashi, Kenichiro
    Dhonukshe, Pankaj
    Yang, Zhenbiao
    Bednarek, Sebastian Y.
    Jones, Alan M.
    Luschnig, Christian
    Aniento, Fernando
    Zazimalova, Eva
    Friml, Jiri
    CELL, 2010, 143 (01) : 111 - 121
  • [7] The role of clathrin-dependent endocytosis in bacterial internalization
    Veiga, Esteban
    Cossart, Pascale
    TRENDS IN CELL BIOLOGY, 2006, 16 (10) : 499 - 504
  • [8] Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis
    Wolfe, Breann L.
    Trejo, JoAnn
    TRAFFIC, 2007, 8 (05) : 462 - 470
  • [9] Activation of MAPK by TRH requires clathrin-dependent endocytosis and PKC but not receptor interaction with β-arrestin or receptor endocytosis
    Smith, J
    Yu, R
    Hinkle, PM
    MOLECULAR ENDOCRINOLOGY, 2001, 15 (09) : 1539 - 1548
  • [10] Constraints and frustration in the clathrin-dependent endocytosis pathway
    Bruna-Gauchoux, Julie
    Montagnac, Guillaume
    COMPTES RENDUS BIOLOGIES, 2022, 345 (02) : 43 - 56