Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence

被引:44
|
作者
Orgiazzi, J. -L. [1 ,2 ]
Deng, C. [2 ,3 ]
Layden, D. [2 ,3 ,4 ]
Marchildon, R. [2 ,3 ,5 ]
Kitapli, F. [1 ,2 ]
Shen, F. [2 ,3 ]
Bal, M. [2 ,3 ,6 ]
Ong, F. R. [2 ,3 ,7 ]
Lupascu, A. [2 ,3 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys & Astron, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[5] Univ Toronto, Edward S Rogers Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
[6] TUBITAK Marmara Res Ctr, Mat Inst, TR-41470 Gebze, Kocaeli, Turkey
[7] Univ Innsbruck, Inst Expt Phys, Technikerstr 25-4, A-6020 Innsbruck, Austria
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
PERSISTENT-CURRENT QUBIT; SUPERCONDUCTING CIRCUITS; PHOTON;
D O I
10.1103/PhysRevB.93.104518
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report experiments on superconducting flux qubits in a circuit quantum electrodynamics (cQED) setup. Two qubits, independently biased and controlled, are coupled to a coplanar waveguide resonator. Dispersive qubit state readout reaches a maximum contrast of 72%. We measure energy relaxation times at the symmetry point of 5 and 10 mu s, corresponding to 7 and 20 mu s when relaxation through the resonator due to Purcell effect is subtracted out, and levels of flux noise of 2.6 and 2.7 mu Phi(0)/root Hz at 1 Hz for the two qubits. We discuss the origin of decoherence in the measured devices. The strong coupling between the qubits and the cavity leads to a large, cavity-mediated, qubit-qubit coupling. This coupling, which is characterized spectroscopically, reaches 38 MHz. These results demonstrate the potential of cQED as a platform for fundamental investigations of decoherence and quantum dynamics of flux qubits.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Optimal Control of Decoherence in the Quantum Circuit Containing Superconducting Qubits
    Ji, Yinghua
    Hu, Juju
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2014, : 240 - 243
  • [2] Universal quantum gate with hybrid qubits in circuit quantum electrodynamics
    Yang, Chui-Ping
    Zheng, Zhen-Fei
    Zhang, Yu
    [J]. OPTICS LETTERS, 2018, 43 (23) : 5765 - 5768
  • [3] An Introduction to Superconducting Qubits and Circuit Quantum Electrodynamics
    Materise, Nicholas
    [J]. MICROWAVE CAVITIES AND DETECTORS FOR AXION RESEARCH, 2018, 211 : 87 - 95
  • [4] Planar Multilayer Circuit Quantum Electrodynamics
    Minev, Z. K.
    Serniak, K.
    Pop, I. M.
    Leghtas, Z.
    Sliwa, K.
    Hatridge, M.
    Frunzio, L.
    Schoelkopf, R. J.
    Devoret, M. H.
    [J]. PHYSICAL REVIEW APPLIED, 2016, 5 (04):
  • [5] Quantum electrodynamics of qubits
    Bialynicki-Birula, Iwo
    Sowinski, Tomasz
    [J]. PHYSICAL REVIEW A, 2007, 76 (06):
  • [6] A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics
    Huang Wen
    Zou Xu-Bo
    Guo Guang-Can
    [J]. CHINESE PHYSICS B, 2015, 24 (06)
  • [7] A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics
    黄文
    邹旭波
    郭光灿
    [J]. Chinese Physics B, 2015, (06) : 357 - 363
  • [8] Mesoscopic shelving readout of superconducting qubits in circuit quantum electrodynamics
    Englert, B. G. U.
    Mangano, G.
    Mariantoni, M.
    Gross, R.
    Siewert, J.
    Solano, E.
    [J]. PHYSICAL REVIEW B, 2010, 81 (13):
  • [9] Optimal control of two qubits via a single cavity drive in circuit quantum electrodynamics
    Allen, Joseph L.
    Kosut, Robert
    Joo, Jaewoo
    Leek, Peter
    Ginossar, Eran
    [J]. PHYSICAL REVIEW A, 2017, 95 (04)
  • [10] Quantum decoherence of two qubits
    Helm, Julius
    Strunz, Walter T.
    [J]. PHYSICAL REVIEW A, 2009, 80 (04)