Representation theorems for probability functions satisfying spectrum exchangeability in inductive logic

被引:8
|
作者
Landes, J. [1 ]
Paris, J. B. [1 ]
Vencovska, A. [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Uncertain reasoning; Inductive logic; Probability logic; Spectrum exchangeability; de Finetti's theorem; Equality;
D O I
10.1016/j.ijar.2009.07.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We prove de Finetti style representation theorems covering the class of all probability functions satisfying spectrum exchangeability in polyadic inductive logic and give an application by characterizing those probability functions satisfying spectrum exchangeability which can be extended to a language with equality whilst still satisfying that property. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 50 条
  • [1] A General Representation Theorem for Probability Functions Satisfying Spectrum Exchangeability
    Paris, J. B.
    Vencovska, A.
    MATHEMATICAL THEORY AND COMPUTATIONAL PRACTICE, 2009, 5635 : 379 - 388
  • [2] A characterization of the Language Invariant families satisfying Spectrum Exchangeability in Polyadic Inductive Logic
    Landes, J.
    Paris, J. B.
    Vencovska, A.
    ANNALS OF PURE AND APPLIED LOGIC, 2010, 161 (06) : 800 - 811
  • [3] Language invariance and spectrum exchangeability in inductive logic
    Landes, Juergen
    Paris, Jeff
    Vencovska, Alena
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2007, 4724 : 151 - +
  • [4] A survey of some recent results on Spectrum Exchangeability in Polyadic Inductive Logic
    J. Landes
    J. B. Paris
    A. Vencovská
    Synthese, 2011, 181 : 19 - 47
  • [5] A survey of some recent results on Spectrum Exchangeability in Polyadic Inductive Logic
    Landes, J.
    Paris, J. B.
    Vencovska, A.
    SYNTHESE, 2011, 181 : 19 - 47
  • [6] PREDICATE EXCHANGEABILITY AND LANGUAGE INVARIANCE IN PURE INDUCTIVE LOGIC
    Kliess, Malte
    Paris, Jeff
    LOGIQUE ET ANALYSE, 2014, (228) : 513 - 540
  • [7] Probability logic, logical probability, and inductive support
    Levi, Isaac
    SYNTHESE, 2010, 172 (01) : 97 - 118
  • [8] Probability logic, logical probability, and inductive support
    Isaac Levi
    Synthese, 2010, 172 : 97 - 118
  • [9] RULE OF SUCCESSION, INDUCTIVE LOGIC, AND PROBABILITY LOGIC
    HOWSON, C
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 1975, 26 (03): : 187 - 198
  • [10] PROBABILITY AND INDUCTIVE LOGIC - KYBURG,HE
    MARTIN, M
    THEORY AND DECISION, 1972, 2 (04) : 380 - 386