The Opial condition in variable exponent sequence spaces lp(.) with applications

被引:0
|
作者
Bachar, Mostafa [1 ]
Khamsi, Mohamed A. [2 ,3 ]
Bounkhel, Messaoud [1 ]
机构
[1] King Saud Univ, Dept Math, Riyadh, Saudi Arabia
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[3] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
electrorheological fluids; fixed point; modular vector spaces; Nakano; nonexpansive; Opial condition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we show an analogue to the Opial property for the coordinate-wise convergence in the variable exponent sequence space l(p(.)). This property allows us to prove a fixed point theorem for the mappings which are nonexpansive in the modular sense.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [1] On modular firmly nonexpansive mappings in the variable exponent sequence spaces lp(.)
    Abdou, Afrah A. N.
    Khamsi, M. A.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (01)
  • [2] Fixed Points of Kannan Maps in the Variable Exponent Sequence Spaces lp(•)
    Abdou, Afrah A. N.
    Khamsi, Mohamed Amine
    [J]. MATHEMATICS, 2020, 8 (01)
  • [3] Periodic Points of Modular Firmly Mappings in the Variable Exponent Sequence Spaces lp(•)
    Abdou, Afrah A. N.
    Khamsi, Mohamed A. A.
    [J]. MATHEMATICS, 2021, 9 (19)
  • [4] Multilinear integral operators on Lp spaces with variable exponent
    Chen, Dazhao
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (12) : 962 - 977
  • [5] Averaging and orthogonal operators on variable exponent spaces Lp(.) (Ω)
    Hernandez, Francisco L.
    Ruiz, Cesar
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (01) : 139 - 153
  • [6] Relative rearrangement and Lebesgue spaces LP(•) with variable exponent
    Fiorenza, A.
    Rakotoson, J. M.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (06): : 506 - 521
  • [7] Remarks on compactness results for variable exponent spaces Lp(.)
    Fiorenza, A.
    Gogatishvili, A.
    Nekvinda, A.
    Rakotoson, J. M.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 157 : 136 - 144
  • [8] Commutators of singular integrals on generalized LP spaces with variable exponent
    Karlovich, AY
    Lerner, AK
    [J]. PUBLICACIONS MATEMATIQUES, 2005, 49 (01) : 111 - 125
  • [9] Fixed Points of Kannan Maps in the Variable Exponent Sequence Spaces lp(•)(vol 8, 76, 2020)
    Abdou, Afrah A. N.
    Khamsi, Mohamed Amine
    [J]. MATHEMATICS, 2020, 8 (04)
  • [10] On Opial properties and Opial modulus for Orlicz sequence spaces
    Cui, YN
    Hudzik, H
    Yu, FF
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (04) : 335 - 350