Natural surface waters in Algarve, Portugal, have important seasonal variations in natural organic matter (NOM) content, that influences ultrafiltration (UF) performance. This paper addresses the evaluation of the pH adjustment for seasonal control of UF fouling at a laboratory scale, using a plate and frame polysulphone membrane of 47 kDa MWCO. Results of two types of natural water (clear water, 3-5 NTU, and turbid water, 33-34.6 NTU) and three different water pH values (acid, neutral and basic) demonstrated that the pH adjustment could be used for seasonal control of UF fouling: when the water has less NOM (in dry periods, clear water), the acid pH will improve the UF performance, while during and after intense rainfall periods (turbid water with high NOM concentration) basic pH will be advantageous, because it minimizes membrane fouling. This behaviour is explained for clear water in terms of charge effects on membrane size. For turbid water, the electrostatic repulsion between membrane surface and NOM and turbidity particles is reduced at pH 4.13 and protonation of the NOM functional groups decreases the hydrodynamic radii of humic substances while increasing their hydrophobicity and their tendency to adsorb. Therefore, a dense fouling layer develops and flux is lower at pH 4.13 than at pH 8.33. These results together with the observed raw water feed concentrations decline and rejection decrease with WRR confirm the extensive adsorption on the membrane enhanced by the moderate hardness cation of this water.