Biomedical Text Mining Applied to Document Retrieval and Semantic Indexing

被引:0
|
作者
Lourenco, Analia [1 ]
Carneiro, Sonia [1 ]
Ferreira, Eugenio C. [1 ]
Carreira, Rafael [1 ,2 ]
Rocha, Luis M. [3 ]
Glez-Pena, Daniel [4 ]
Mendez, Jose R. [4 ]
Fdez-Riverola, Florentino [4 ]
Diaz, Fernando [5 ]
Rocha, Isabel [1 ]
Rocha, Miguel [2 ]
机构
[1] Univ Minho, IBB CEB, Campus Gualtar, Braga, Portugal
[2] Univ Minho, CCTC, Braga, Portugal
[3] Indiana Univ, Sch Informat, Bloomington, IN USA
[4] Univ Vigo, Dept Comp Sci, Orense, Spain
[5] Univ Valladolid, Dept Comp Sci, Segovia, Spain
关键词
Biomedical Document Retrieval; Document Relevance; Enhanced Instance Retrieval Network; Named Entity Recognition; Semantic Indexing Document Network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In Biomedical research, the ability to retrieve the adequate information from the ever growing literature is an extremely important asset. This work provides an enhanced and general purpose approach to the process of document retrieval that enables the filtering of PubMed query results. The system is based on semantic indexing providing, for each set of retrieved documents, a network that links documents and relevant terms obtained by the annotation of biological entities (e.g. genes or proteins). This network provides distinct user perspectives and allows navigation over documents with similar terms and is also used to assess document relevance. A network learning procedure, based on previous work from e-mail spam filtering, is proposed, receiving as input a training set of manually classified documents.
引用
收藏
页码:954 / +
页数:3
相关论文
共 50 条
  • [1] BioDR: Semantic indexing networks for biomedical document retrieval
    Lourenco, Analia
    Carreira, Rafael
    Glez-Pena, Daniel
    Mendez, Jose R.
    Carneiro, Sonia
    Rocha, Luis M.
    Diaz, Fernando
    Ferreira, Eugenio C.
    Rocha, Isabel
    Fdez-Riverola, Florentino
    Rocha, Miguel
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (04) : 3444 - 3453
  • [2] Arabic Document Indexing for Improved Text Retrieval
    Al-Lahham, Yaser A. M.
    2019 2ND INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2019, : 226 - 230
  • [3] Performance analysis of semantic indexing in text retrieval
    Kang, BY
    Kim, HJ
    Lee, SJ
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2004, 2945 : 433 - 436
  • [4] Information retrieval and text categorization with semantic indexing
    Rosso, P
    Molina, A
    Pla, F
    Jiménez, D
    Vidal, V
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2004, 2945 : 596 - 600
  • [5] MeSHup: A Corpus for Full Text Biomedical Document Indexing
    Wang, Xindi
    Mercer, Robert E.
    Rudzicz, Frank
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 5473 - 5483
  • [6] Framework for document retrieval using latent semantic indexing
    Phadnis, Neelam
    Gadge, Jayant
    International Journal of Computers and Applications, 2014, 94 (14) : 37 - 41
  • [7] Semantic Indexing and Document Retrieval for Personalized Language Modeling
    Stas, Jan
    Hladek, Daniel
    Juhar, Jozef
    PROCEEDINGS OF 2017 INTERNATIONAL SYMPOSIUM ELMAR, 2017, : 157 - 161
  • [8] Document mining based on semantic understanding of text
    Shaban, Khaled
    Basir, Otman
    Kamel, Mohamed
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 834 - 843
  • [9] OPERATIONS-RESEARCH APPLIED TO DOCUMENT INDEXING AND RETRIEVAL DECISIONS
    BOOKSTEIN, A
    KRAFT, DH
    OPERATIONS RESEARCH, 1975, 23 : B416 - B417
  • [10] OPERATIONS-RESEARCH APPLIED TO DOCUMENT INDEXING AND RETRIEVAL DECISIONS
    BOOKSTEIN, A
    KRAFT, D
    JOURNAL OF THE ACM, 1977, 24 (03) : 418 - 427