Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels

被引:238
|
作者
Hoare, Todd [1 ]
Pelton, Robert [1 ]
机构
[1] McMaster Univ, Dept Chem Engn, Hamilton, ON L8S 4L7, Canada
关键词
D O I
10.1021/ma062254w
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(N-isopropylacrylamide) (PNIPAM) microgels are functionalized with aminophenyboronic acid (APBA) to produce nanoparticles which swell in response to increases in the glucose concentration. A "graft-to" approach was used to synthesize a range of microgels with different physical properties from the same base microgel. Higher APBA graft yields are achieved as the -COOH groups in the platform microgel become more localized on the surface and more highly spaced within the subchains. The glucose swelling response of the graft microgels is enhanced as the PBA functional groups become more localized in the outer shell of the microgel and more randomly distributed within the gel network subchains. The glucose-induced VPTT shift observed in the PBA-microgel conjugates can be exploited to produce microgels that exhibit on-off glucose swelling as a function of temperature or enhanced swelling responses over specific glucose concentration ranges at a single, tunable temperature. The "secondary" thermal phase transition is thus applied to effect an order-of-magnitude enhancement or suppression of the "primary" glucose-induced phase transition. Both linear and nonlinear microgel glucose sensors are subsequently designed which are active within targeted glucose concentration ranges.
引用
收藏
页码:670 / 678
页数:9
相关论文
共 50 条
  • [1] Swelling properties of colloidal poly(N-isopropylacrylamide) microgels in solution
    Kratz, K
    Eimer, W
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1998, 102 (06): : 848 - 854
  • [2] Bulk modulus of poly(N-isopropylacrylamide) microgels through the swelling transition
    Sierra-Martin, B.
    Laporte, Y.
    South, A. B.
    Lyon, L. A.
    Fernandez-Nieves, A.
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [3] Multiresponsive Supramolecular Poly(N-isopropylacrylamide) Microgels
    Brezault, Antoine
    Perrin, Patrick
    Sanson, Nicolas
    MACROMOLECULES, 2024, 57 (06) : 2651 - 2660
  • [4] N-Chlorinated Poly(N-isopropylacrylamide) Microgels
    Wang, Zuohe
    Lam, Wing Yan
    Pelton, Robert
    LANGMUIR, 2013, 29 (42) : 12924 - 12929
  • [5] The photophysics of doxorubicin in poly(N-isopropylacrylamide) microgels
    Doo, Hyungie
    Lyon, L. Andrew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [6] Unexpected Cononsolvency Behavior of Poly(N-isopropylacrylamide)-Based Microgels
    Heppner, Ian N.
    Islam, Molla R.
    Serpe, Michael J.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2013, 34 (21) : 1708 - 1713
  • [7] The impact of the cononsolvency effect on poly (N-isopropylacrylamide) based microgels at interfaces
    Richter, Marcel
    Hunnenmoerder, Melanie
    Klitzing, Regine V.
    COLLOID AND POLYMER SCIENCE, 2014, 292 (10) : 2439 - 2452
  • [8] Photoinduced phase transitions in poly(N-isopropylacrylamide) microgels
    Nayak, S
    Lyon, LA
    CHEMISTRY OF MATERIALS, 2004, 16 (13) : 2623 - 2627
  • [9] The impact of the cononsolvency effect on poly (N-isopropylacrylamide) based microgels at interfaces
    Marcel Richter
    Melanie Hunnenmörder
    Regine V. Klitzing
    Colloid and Polymer Science, 2014, 292 : 2439 - 2452
  • [10] Microfluidic production of degradable thermoresponsive poly(N-isopropylacrylamide)-based microgels
    Sivakumaran, Daryl
    Mueller, Eva
    Hoare, Todd
    SOFT MATTER, 2017, 13 (47) : 9060 - 9070