Effects of Accuracy-based Single-Objective Optimization in Multiobjective Fuzzy Genetics-based Machine Learning

被引:0
|
作者
Konishi, Takeru [1 ]
Masuyama, Naoki [2 ]
Nojima, Yusuke [2 ]
机构
[1] Osaka Prefecture Univ, Sch Engn, Sakai, Osaka, Japan
[2] Osaka Prefecture Univ, Grad Sch Informat, Sakai, Osaka, Japan
关键词
Fuzzy Classifier Design; Evolutionary Multiobjective Optimization; Accuracy Improvement; SYSTEMS;
D O I
10.1109/SCISISIS55246.2022.10002139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fuzzy classifier design often requires the maximization of classification accuracy and minimization of model complexity. Multiobjective Fuzzy Genetics-Based Machine Learning (MoFGBML) can efficiently obtain a set of fuzzy classifiers considering the above-mentioned two objectives simultaneously using an evolutionary multiobjective optimization algorithm. However, the search by MoFGBML is biased toward minimizing the complexity, and it is easy to obtain classifiers with low complexity. At the same time, it is difficult to obtain classifiers with high classification accuracy. In this paper, we propose a two-stage MoFGBML, which first performs accuracy-oriented single-objective optimization to obtain a set of accurate classifiers with a large number of rules. Then, multiobjective optimization is performed to obtain a wide variety of classifiers, from highly-accurate ones to very simple ones.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Rotation Effects of Objective Functions in Parallel Distributed Multiobjective Fuzzy Genetics-Based Machine Learning
    Takahashi, Yuji
    Nojima, Yusuke
    Ishibuchi, Hisao
    [J]. 2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [2] Performance evaluation of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning
    Hisao Ishibuchi
    Yusuke Nakashima
    Yusuke Nojima
    [J]. Soft Computing, 2011, 15 : 2415 - 2434
  • [3] Performance evaluation of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning
    Ishibuchi, Hisao
    Nakashima, Yusuke
    Nojima, Yusuke
    [J]. SOFT COMPUTING, 2011, 15 (12) : 2415 - 2434
  • [4] Search Ability of Evolutionary Multiobjective Optimization Algorithms for Multiobjective Fuzzy Genetics-Based Machine Learning
    Ishibuchi, Hisao
    Nakashima, Yusuke
    Nojima, Yusuke
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1724 - 1729
  • [5] Multiobjective Fuzzy Genetics-Based Machine Learning with a Reject Option
    Nojima, Yusuke
    Ishibuchi, Hisao
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 1405 - 1412
  • [6] Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    Ishibuchi, Hisao
    Nojima, Yusuke
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2007, 44 (01) : 4 - 31
  • [7] Multiobjective Fuzzy Genetics-Based Machine Learning based on MOEA/D with its Modifications
    Nojima, Yusuke
    Arahari, Koki
    Takemura, Shuji
    Ishibuchi, Hisao
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [8] Effects of the Use of Multiple Fuzzy Partitions on the Search Ability of Multiobjective Fuzzy Genetics-Based Machine Learning
    Nojima, Yusuke
    Nakashima, Yusuke
    Ishibuchi, Hisao
    [J]. 2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, 2009, : 341 - 346
  • [9] Application of Parallel Distributed Implementation to Multiobjective Fuzzy Genetics-Based Machine Learning
    Nojima, Yusuke
    Takahashi, Yuji
    Ishibuchi, Hisao
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, 2015, 9011 : 462 - 471
  • [10] Multiobjective Fuzzy Genetics-Based Machine Learning for Multi-Label Classification
    Omozaki, Yuichi
    Masuyama, Naoki
    Nojima, Yusuke
    Ishibuchi, Hisao
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,