Learning Predictable and Discriminative Attributes for Visual Recognition

被引:0
|
作者
Guo, Yuchen [1 ]
Ding, Guiguang [1 ]
Jin, Xiaoming [1 ]
Wang, Jianmin [1 ]
机构
[1] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Utilizing attributes for visual recognition has attracted increasingly interest because attributes can effectively bridge the semantic gap between low-level visual features and high-level semantic labels. In this paper, we propose a novel method for learning predictable and discriminative attributes. Specifically, we require the learned attributes can be reliably predicted from visual features, and discover the inherent discriminative structure of data. In addition, we propose to exploit the intra-category locality of data to overcome the intra-category variance in visual data. We conduct extensive experiments on Animals with Attributes (AwA) and Caltech256 datasets, and the results demonstrate that the proposed method achieves state-of-the-art performance.
引用
收藏
页码:3783 / 3789
页数:7
相关论文
共 50 条
  • [1] Unsupervised Learning of Discriminative Attributes and Visual Representations
    Huang, Chen
    Loy, Chen Change
    Tang, Xiaoou
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5175 - 5184
  • [2] Unsupervised Learning of Discriminative Relative Visual Attributes
    Ma, Shugao
    Sclaroff, Stan
    Ikizler-Cinbis, Nazli
    [J]. COMPUTER VISION - ECCV 2012, PT III, 2012, 7585 : 61 - 70
  • [3] Designing Category-Level Attributes for Discriminative Visual Recognition
    Yu, Felix X.
    Cao, Liangliang
    Feris, Rogerio S.
    Smith, John R.
    Chang, Shih-Fu
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 771 - 778
  • [4] Learning Concise and Descriptive Attributes for Visual Recognition
    Yan, An
    Wang, Yu
    Zhong, Yiwu
    Dong, Chengyu
    He, Zexue
    Lu, Yujie
    Wang, William Yang
    Shang, Jingbo
    McAuley, Julian
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 3067 - 3077
  • [5] IDENTIFYING AND LEARNING VISUAL ATTRIBUTES FOR OBJECT RECOGNITION
    Wan, Kong-Wah
    Roy, Sujoy
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3893 - 3896
  • [6] Asymmetric object recognition with discriminative learning and visual mirror
    Wang, Jiabao
    Zhang, Yafei
    Lu, Jianjiang
    Chen, Jifei
    [J]. CEIS 2011, 2011, 15
  • [7] Learning Discriminative Visual Codebook for Human Action Recognition
    Lei, Qing
    Li, Shao-zi
    Zhang, Hong-bo
    [J]. JOURNAL OF COMPUTERS, 2013, 8 (12) : 3093 - 3102
  • [8] Learning Shared, Discriminative, and Compact Representations for Visual Recognition
    Lobel, Hans
    Vidal, Rene
    Soto, Alvaro
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (11) : 2218 - 2231
  • [9] Discriminative power of visual attributes in dermatology
    Giotis, Ioannis
    Visser, Margaretha
    Jonkman, Marcel
    Petkov, Nicolai
    [J]. SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) : E123 - E131
  • [10] DISCRIMINATIVE BAG-OF-VISUAL PHRASE LEARNING FOR LANDMARK RECOGNITION
    Chen, Tao
    Yap, Kim-Hui
    Zhang, Dajiang
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 893 - 896