FACIAL EXPRESSION RECOGNITION IN THE WILD USING RICH DEEP FEATURES

被引:0
|
作者
Karali, Abubakrelsedik [1 ]
Bassiouny, Ahmad [1 ]
El-Saban, Motaz [1 ]
机构
[1] Microsoft Technol & Res, Microsoft Adv Technol Labs, Cairo, Egypt
关键词
Facial expression recognition; deep neural networks features;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Facial Expression Recognition is an active area of research in computer vision with a wide range of applications. Several approaches have been developed to solve this problem for different benchmark datasets. However, Facial Expression Recognition in the wild remains an area where much work is still needed to serve real-world applications. To this end, in this paper we present a novel approach towards facial expression recognition. We fuse rich deep features with domain knowledge through encoding discriminant facial patches. We conduct experiments on two of the most popular benchmark datasets; CK and TFE. Moreover, we present a novel dataset that, unlike its precedents, consists of natural - not acted - expression images. Experimental results show that our approach achieves state-of-the-art results over standard benchmarks and our own dataset.
引用
收藏
页码:3442 / 3446
页数:5
相关论文
共 50 条
  • [1] Facial expression recognition in the wild, by fusion of deep learnt and hand-crafted features
    Reddy, G. Viswanatha
    Savarni, C. V. R. Dharma
    Mukherjee, Snehasis
    COGNITIVE SYSTEMS RESEARCH, 2020, 62 : 23 - 34
  • [2] Facial expression recognition in the wild, by fusion of deep learnt and hand-crafted features
    Viswanatha Reddy, G.
    Dharma Savarni, C.V.R.
    Mukherjee, Snehasis
    Cognitive Systems Research, 2020, 62 : 23 - 34
  • [3] Compound Facial Emotional Expression Recognition using CNN Deep Features
    Slimani, Khadija
    Ruichek, Yassine
    Messoussi, Rochdi
    ENGINEERING LETTERS, 2022, 30 (04) : 1402 - 1416
  • [4] Facial Expression Recognition Using Facial Movement Features
    Zhang, Ligang
    Tjondronegoro, Dian
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2011, 2 (04) : 219 - 229
  • [5] Deep Generic Features and SVM for Facial Expression Recognition
    Duc Minh Vo
    Thai Hoang Le
    2016 3RD NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2016, : 80 - 84
  • [6] Facial expression recognition in the wild based on multimodal texture features
    Sun, Bo
    Li, Liandong
    Zhou, Guoyan
    He, Jun
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (06)
  • [7] Learning Informative and Discriminative Features for Facial Expression Recognition in the Wild
    Li, Yingjian
    Lu, Yao
    Chen, Bingzhi
    Zhang, Zheng
    Li, Jinxing
    Lu, Guangming
    Zhang, David
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 3178 - 3189
  • [8] Driver's facial expression recognition by using deep local and global features
    Manavand, Mozhgan Rezaie
    Salarifar, Mohammad Hosien
    Ghavami, Mohammad
    Taghipour-Gorjikolaie, Mehran
    Information Sciences, 2025, 692
  • [9] FERNet: A Deep CNN Architecture for Facial Expression Recognition in the Wild
    Bodapati J.D.
    Srilakshmi U.
    Veeranjaneyulu N.
    Journal of The Institution of Engineers (India): Series B, 2022, 103 (02) : 439 - 448
  • [10] Deep Siamese Neural Networks for Facial Expression Recognition in the Wild
    Hayale, Wassan
    Negi, Pooran Singh
    Mahoor, Mohammad H.
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (02) : 1148 - 1158