Phosphorylation of smooth muscle myosin heads regulates the head-induced movement of tropomyosin

被引:15
|
作者
Graceffa, P [1 ]
机构
[1] Boston Biomed Res Inst, Muscle & Motil Grp, Watertown, MA 02472 USA
关键词
D O I
10.1074/jbc.M001979200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has been shown that skeletal and smooth muscle myosin heads binding to actin results in the movement of smooth muscle tropomyosin, as revealed by a change in fluorescence resonance energy transfer between a fluorescence donor on tropomyosin and an acceptor on actin (Graceffa, P. (1999) Biochemistry 38, 11984-11992), In this work, tropomyosin movement was similarly monitored as a function of unphosphorylated and phosphorylated smooth muscle myosin double-headed fragment smHMM. In the absence of nucleotide and at low myosin head/actin ratios, only phosphorylated heads induced a change in energy transfer. In the presence of ADP, the effect of head phosphorylation was even more dramatic, in that at all levels of myosin head/actin, phosphorylation was necessary to affect energy transfer, It is proposed that the regulation of tropomyosin position on actin by phosphorylation of myosin heads plays a key role in the regulation of smooth muscle contraction. In contrast, actin-bound caldesmon was not moved by myosin heads at low head/actin ratios, as uncovered by fluorescence resonance energy transfer and disulfide cross-linking between caldesmon and actin, At higher head concentration caldesmon was dissociated from actin, consistent with the multiple binding model for the binding of caldesmon and myosin heads to actin (Chen, Y., and Chalovich, J. M. (1992) Biophys. J. 63, 1063-1070).
引用
收藏
页码:17143 / 17148
页数:6
相关论文
共 50 条