Some Higher-Degree Lacunary Fractional Splines in the Approximation of Fractional Differential Equations

被引:13
|
作者
Srivastava, Hari Mohan [1 ,2 ,3 ,4 ]
Mohammed, Pshtiwan Othman [5 ]
Guirao, Juan L. G. [6 ]
Hamed, Y. S. [7 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] Univ Sulaimani, Dept Math, Coll Educ, Sulaimani 46001, Kurdistan Regio, Iraq
[6] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Campus Muralla, Murcia 30203, Spain
[7] Taif Univ, Dept Math & Stat, Coll Sci, POB 11099, At Taif 21944, Saudi Arabia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 03期
关键词
FDEs; lacunary fractional spline; Riemann– Liouville fractional derivative; Liouville– Caputo fractional derivative; fractional Taylor’ s expansion; error bounds; DERIVATIVES;
D O I
10.3390/sym13030422
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we begin by introducing two classes of lacunary fractional spline functions by using the Liouville-Caputo fractional Taylor expansion. We then introduce a new higher-order lacunary fractional spline method. We not only derive the existence and uniqueness of the method, but we also provide the error bounds for approximating the unique positive solution. As applications of our fundamental findings, we offer some Liouville-Caputo fractional differential equations (FDEs) to illustrate the practicability and effectiveness of the proposed method. Several recent developments on the the theory and applications of FDEs in (for example) real-life situations are also indicated.
引用
收藏
页数:13
相关论文
共 50 条