Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification

被引:9
|
作者
Medico, Roberto [1 ]
Ruyssinck, Joeri [1 ]
Deschrijver, Dirk [1 ]
Dhaene, Tom [1 ]
机构
[1] Univ Ghent, IMEC, Dept Informat Technol, IDLab, iGent Tower,Technol Pk Zwijnaarde 126, B-9052 Ghent, Belgium
关键词
Shapelets; Time-series classification; Machine learning; Neural networks;
D O I
10.1007/s11634-021-00437-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Shapelets are discriminative subsequences extracted from time-series data. Classifiers using shapelets have proven to achieve performances competitive to state-of-the-art methods, while enhancing the model's interpretability. While a lot of research has been done for univariate time-series shapelets, extensions for the multivariate setting have not yet received much attention. To extend shapelets-based classification to a multidimensional setting, we developed a novel architecture for shapelets learning, by embedding them as trainable weights in a multi-layer Neural Network. We also investigated the introduction of a novel learning strategy for the shapelets, comprising of two additional terms in the optimization goal, to retrieve a reduced set of uncorrelated shapelets. This paper describes the proposed architecture and presents results on ten publicly available benchmark datasets, as well as a comparison with existing state-of-the-art methods. Moreover, the proposed optimization objective leads the model to automatically select smaller sets of uncorrelated shapelets, thus requiring no additional manual optimization on typically important hyper-parameters such as number and length of shapelets. The results show how the proposed approach achieves competitive performance across the datasets, and always leads to a significant reduction in the number of shapelets used. This can make it faster for a domain expert to match shapelets to real patterns, thus enhancing the interpretability of the model. Finally, since the shapelets learnt during training can be extracted from the model they can serve as meaningful insights on the classifier's decisions and the interactions between different dimensions.
引用
下载
收藏
页码:911 / 936
页数:26
相关论文
共 50 条
  • [1] Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification
    Roberto Medico
    Joeri Ruyssinck
    Dirk Deschrijver
    Tom Dhaene
    Advances in Data Analysis and Classification, 2021, 15 : 911 - 936
  • [2] Efficient Learning Interpretable Shapelets for Accurate Time Series Classification
    Fang, Zicheng
    Wang, Peng
    Wang, Wei
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 497 - 508
  • [3] Learning DTW-Shapelets for Time-Series Classification
    Shah, Mit
    Grabocka, Josif
    Schilling, Nicolas
    Wistuba, Martin
    Schmidt-Thieme, Lars
    PROCEEDINGS OF THE THIRD ACM IKDD CONFERENCE ON DATA SCIENCES (CODS), 2016,
  • [4] Learning Time-Series Shapelets
    Grabocka, Josif
    Schilling, Nicolas
    Wistuba, Martin
    Schmidt-Thieme, Lars
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 392 - 401
  • [5] Multi-Scale Shapelets Discovery for Time-Series Classification
    Cai, Borui
    Huang, Guangyan
    Xiang, Yong
    Angelova, Maia
    Guo, Limin
    Chi, Chi-Hung
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2020, 19 (03) : 721 - 739
  • [6] Learning Evolvable Time-series Shapelets
    Yamaguchi, Akihiro
    Ueo, Ken
    Kashima, Hisashi
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 793 - 805
  • [7] Optimal shapelets tree for time series interpretable classification
    Bonasera, Lorenzo
    Gualandi, Stefano
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2024, 12
  • [8] Localized shapelets selection for interpretable time series classification
    Chen, Jiahui
    Wan, Yuan
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17985 - 18001
  • [9] Localized shapelets selection for interpretable time series classification
    Jiahui Chen
    Yuan Wan
    Applied Intelligence, 2023, 53 : 17985 - 18001
  • [10] Efficient class-specific shapelets learning for interpretable time series classification
    Liang, Zhiyu
    Wang, Hongzhi
    INFORMATION SCIENCES, 2021, 570 : 428 - 450