Risk Assessment of Atrial Fibrillation: a Failure Prediction Approach

被引:0
|
作者
Milosevic, Jelena [1 ]
Dittrich, Andreas [1 ]
Ferrante, Alberto [1 ]
Malek, Miroslaw [1 ]
Quiros, Camilo Rojas [2 ]
Braojos, Ruben [2 ]
Ansaloni, Giovanni [2 ]
Atienza, David [2 ]
机构
[1] Univ Svizzera Italiana, Fac Informat, ALaRI, Via G Buffi 13, CH-6904 Lugano, Switzerland
[2] Ecole Polytech Fed Lausanne, Embedded Syst Lab, CH-1015 Lausanne, Switzerland
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We present a methodology for identifying patients who have experienced Paroxysmal Atrial Fibrillation (PAF) among a given subject population. Our work is intended as an initial step towards the design of an unobtrusive portable system for concurrent detection and monitoring of chronic cardiac conditions. The methodology comprises two stages: off-line training and on-line analysis. During training the most significant features are selected using machine learning methods, without relying on a manual selection based on previous knowledge. Analysis is done in two phases: feature extraction and detection of PAF patients. Light-weight algorithms are employed in the feature extraction phase, allowing the on-line implementation of this step on wearable sensor nodes. The detection phase employs techniques borrowed from the field of failure prediction. While these algorithms have found extensive application in diverse scenarios, their application to automated cardiac analysis has not been sufficiently investigated to date. The proposed methodology is able to correctly classify 68% of the test records in the PAF Prediction Challenge database, performing comparably to state of the art off-line algorithms. Nonetheless, the proposed method employs embedded signal processing for the critical feature extraction step, which is executed on resource-constrained body sensor nodes. This allows for a real-time and energy-efficient implementation.
引用
收藏
页码:801 / 804
页数:4
相关论文
共 50 条
  • [1] Risk assessment for incident heart failure in individuals with atrial fibrillation
    Schnabel, Renate B.
    Rienstra, Michiel
    Sullivan, Lisa M.
    Sun, Jenny X.
    Moser, Carlee B.
    Levy, Daniel
    Pencina, Michael J.
    Fontes, Joao D.
    Magnani, Jared W.
    McManus, David D.
    Lubitz, Steven A.
    Tadros, Thomas M.
    Wang, Thomas J.
    Ellinor, Patrick T.
    Vasan, Ramachandran S.
    Benjamin, Emelia J.
    EUROPEAN JOURNAL OF HEART FAILURE, 2013, 15 (08) : 843 - 849
  • [2] Assessment of Conventional Cardiovascular Risk Factors and Multiple Biomarkers for the Prediction of Incident Heart Failure and Atrial Fibrillation
    Smith, J. Gustav
    Newton-Cheh, Christopher
    Almgren, Peter
    Struck, Joachim
    Morgenthaler, Nils G.
    Bergmann, Andreas
    Platonov, Pyotr G.
    Hedblad, Bo
    Engstroem, Gunnar
    Wang, Thomas J.
    Melander, Olle
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2010, 56 (21) : 1713 - 1719
  • [3] Genetic risk prediction of atrial fibrillation in a contemporary heart failure cohort
    Kloosterman, M.
    Santema, B. T.
    Roselli, C.
    Koekemoer, A. L.
    Romaine, S. P. R.
    Nelson, C. P.
    Van Gelder, I. C.
    Lam, C. S. P.
    Van der Harst, P.
    Sama, I. E.
    Van Veldhuisen, D. J.
    Voors, A. A.
    Samani, N. J.
    Rienstra, M.
    EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 : 494 - 495
  • [4] Genetic Risk Prediction of Atrial Fibrillation in a Contemporary Heart Failure Cohort
    Kloosterman, Marielle
    Santema, Bernadet T.
    Van der Harst, Pim
    Koekemoer, Andrea L.
    Romaine, Simon P.
    Nelson, Chrisopher P.
    Van Gelder, Isabelle C.
    Lam, Carolyn S.
    Verweij, Niek
    Sama, Iziah E.
    Van Veldhuisen, Dirk J.
    Voors, Adriaan A.
    Samani, Nilesh J.
    Rienstra, Michiel
    CIRCULATION, 2018, 138
  • [5] A polygenic risk score of atrial fibrillation improves prediction of lifetime risk for heart failure
    Alkis, Taryn
    Luo, Xi
    Wall, Katherine
    Brody, Jennifer
    Bartz, Traci
    Chang, Patricia P.
    Norby, Faye L.
    Hoogeveen, Ron C.
    Morrison, Alanna C.
    Ballantyne, Christie M.
    Coresh, Josef
    Boerwinkle, Eric
    Psaty, Bruce M.
    Shah, Amil M.
    Yu, Bing
    ESC HEART FAILURE, 2024, 11 (02): : 1086 - 1096
  • [6] Atrial Fibrillation in Kidney Failure: Challenges in Risk Assessment and Anticoagulation Management
    Law, Mandy M.
    Tan, Sven-Jean
    Wong, Michael C. G.
    Toussaint, Nigel D.
    KIDNEY MEDICINE, 2023, 5 (09)
  • [7] Prediction of atrial fibrillation risk in the community
    Biteker, Murat
    Basaran, Ozcan
    Dogan, Volkan
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2016, 222 : 1056 - 1056
  • [8] Heartbeat: prediction of atrial fibrillation risk
    Otto, Catherine M.
    HEART, 2023, 109 (14) : 1045 - 1047
  • [9] Genetic Risk Prediction of Atrial Fibrillation
    Lubitz, Steven A.
    Yin, Xiaoyan
    Lin, Henry J.
    Kolek, Matthew
    Smith, J. Gustav
    Trompet, Stella
    Rienstra, Michiel
    Rost, Natalia S.
    Teixeira, Pedro L.
    Almgren, Peter
    Anderson, Christopher D.
    Chen, Lin Y.
    Engstrom, Gunnar
    Ford, Ian
    Furie, Karen L.
    Guo, Xiuqing
    Larson, Martin G.
    Lunetta, Kathryn L.
    Macfarlane, Peter W.
    Psaty, Bruce M.
    Soliman, Elsayed Z.
    Sotoodehnia, Nona
    Stott, David J.
    Taylor, Kent D.
    Weng, Lu-Chen
    Yao, Jie
    Geelhoed, Bastiaan
    Verweij, Niek
    Siland, Joylene E.
    Kathiresan, Sekar
    Roselli, Carolina
    Roden, Dan M.
    van der Harst, Pim
    Darbar, Dawood
    Jukema, J. Wouter
    Melander, Olle
    Rosand, Jonathan
    Rotter, Jerome I.
    Heckbert, Susan R.
    Ellinor, Patrick T.
    Alonso, Alvaro
    Benjamin, Emelia J.
    CIRCULATION, 2017, 135 (14) : 1311 - +
  • [10] Prediction of atrial fibrillation in patients with heart failure
    Bertini, M.
    Borleffs, C. J. W.
    Delgado, V.
    Ng, A. C. T.
    Antoni, M. L.
    Boriani, G.
    Schalij, M. J.
    Van De Veire, N. R. L.
    Bax, J. J.
    EUROPEAN HEART JOURNAL, 2010, 31 : 714 - 715