Rapid fluctuation for topological dynamical systems

被引:1
|
作者
Huang, Yu [1 ]
Zhou, Yi [2 ]
机构
[1] Zhongshan Sun Yat sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Zhongshan Sun Yat sen Univ, Dept Biomed Engn, Zhongshan Sch Med, Guangzhou 510080, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Rapid fluctuation; quasi-shift invariant set; topological horseshoe; Hausdorff dimension; LINEAR WAVE-EQUATION; VAN; SNAPSHOTS; CHAOS; MAPS;
D O I
10.1007/s11464-009-0030-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new notion called rapid fluctuation to characterize the complexity of a general topological dynamical system. As a continuation of the former work [Huang, Chen, Ma, J. Math. Anal. Appl., 2006, 323: 228-252], here we prove that a Lipschitz dynamical system defined on a compact metric space has a rapid fluctuation if it has either a quasi shift invariant set or a topological horseshoe. As an application, the rapid fluctuation of a discrete predator-prey model is considered.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 50 条
  • [1] Rapid fluctuation for topological dynamical systems
    Yu Huang
    Yi Zhou
    [J]. Frontiers of Mathematics in China, 2009, 4 : 483 - 494
  • [2] Induced topological pressure for topological dynamical systems
    Xing, Zhitao
    Chen, Ercai
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [3] Applications to topological dynamical systems
    Dooley, Anthony H.
    Zhang, Guohua
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 233 (1099) : 91 - 101
  • [4] Topological Causality in Dynamical Systems
    Harnack, Daniel
    Laminski, Erik
    Schuenemann, Maik
    Pawelzik, Klaus Richard
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (09)
  • [5] TOPOLOGICAL THEORY OF DYNAMICAL SYSTEMS
    THOMAS, TY
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (01) : 71 - 71
  • [6] Topological entropy of nonautonomous dynamical systems
    Liu, Kairan
    Qiao, Yixiao
    Xu, Leiye
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5353 - 5365
  • [7] Topological identification in networks of dynamical systems
    Materassi, D.
    Innocenti, G.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 823 - 828
  • [8] Bohr chaoticity of topological dynamical systems
    Fan, Aihua
    Fan, Shilei
    Ryzhikov, Valery V.
    Shen, Weixiao
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (02) : 1127 - 1154
  • [9] 'ETALE DYNAMICAL SYSTEMS AND TOPOLOGICAL ENTROPY
    Truong, Tuyen Trung
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (12) : 5139 - 5149
  • [10] Topological entropy of fuzzified dynamical systems
    Canovas, J. S.
    Kupka, J.
    [J]. FUZZY SETS AND SYSTEMS, 2011, 165 (01) : 37 - 49