A Constrained LQ Approach to Numerical Solutions for Constrained Nonlinear Optimal Control Problems

被引:0
|
作者
Imae, Joe [1 ]
Ando, Tomonari [1 ]
Kobayashi, Tomoaki [1 ]
Zhai, Guisheng [1 ]
机构
[1] Osaka Prefecture Univ, Dept Mech Engn, Osaka 5998531, Japan
关键词
Computational method; Constrained nonlinear optimal control problem; Penalty function; LQ problem;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new algorithm for numerical solutions of constrained nonlinear optimal control problems, based on constrained LQ problems. The proposed algorithm is described as follows. First, we approximate the constrained nonlinear optimal control problems by the Taylor expansion technique, resulting in the standard LQ problems, but with linearized constraints. Then, by making use of penalty function methods, we construct the augmented LQ problem, which is one of unconstrained optimal control problems, and therefore we can easily obtain the optimal solution of the augmented LQ problem by Riccati transformation. Finally, repeating the above procedure with a certain type of filter, we eventually obtain the numerical solutions for constrained nonlinear optimal control problems. The effectiveness is demonstrated through simulation.
引用
收藏
页码:170 / 174
页数:5
相关论文
共 50 条
  • [1] QuITO: Numerical software for constrained nonlinear optimal control problems
    Ganguly, Siddhartha
    Randad, Nakul
    D'Silva, Aaron
    Raj, S. Mukesh
    Chatterjee, Debasish
    [J]. SOFTWAREX, 2023, 24
  • [2] STABILITY OF SOLUTIONS TO CONTROL CONSTRAINED NONLINEAR OPTIMAL-CONTROL PROBLEMS
    ALT, W
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (01): : 53 - 68
  • [3] A numerical algebraic geometry approach to nonlinear constrained optimal control
    Bates, Daniel J.
    Fotiou, Ioannis A.
    Rostalski, Philipp
    [J]. PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2830 - +
  • [4] Hybrid functions approach for nonlinear constrained optimal control problems
    Mashayekhi, S.
    Ordokhani, Y.
    Razzaghi, M.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1831 - 1843
  • [5] Rationalized Haar approach for nonlinear constrained optimal control problems
    Marzban, H. R.
    Razzaghi, M.
    [J]. APPLIED MATHEMATICAL MODELLING, 2010, 34 (01) : 174 - 183
  • [6] Numerical solutions for constrained time-delayed optimal control problems
    El-Kady, M.
    Elbarbary, Elsayed M. E.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (11) : 1649 - 1671
  • [7] A NUMERICAL ALGORITHM FOR CONSTRAINED OPTIMAL CONTROL PROBLEMS
    Zhao, Bowen
    Xu, Honglei
    Teo, Kok Lay
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (12) : 8602 - 8616
  • [8] Galerkin Optimal Control for Constrained Nonlinear Problems
    Boucher, Randy
    Kang, Wei
    Gong, Qi
    [J]. 2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 2432 - 2437
  • [9] Constrained regular LQ-control problems
    Stefani, G
    Zezza, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (03) : 876 - 900
  • [10] Numerical solution of constrained optimal control problems with parameters
    Fabien, BC
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1996, 80 (01) : 43 - 62