Video-based Foreign Object Debris detection

被引:29
|
作者
Qunyu, Xu [1 ]
Huansheng, Ning [1 ]
Weishi, Chen [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Elect & Informat Engn, Beijing 100083, Peoples R China
关键词
foreign object debris (FOD); camera; change detection;
D O I
10.1109/IST.2009.5071615
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Foreign Object Debris (FOD) at airports can pose a perennial hazard to the safety and integrity of an aircraft. This paper describes a video-based experimental system used for FOD detection application. The system design philosophy is to investigate the viability of using several simpler fixed camera sensors mounted close to the runway to detect FOD. A FOD target detection algorithm based on image change detection is proposed. Tests were conducted on the Nanyang Airport and some preliminary experimental results are also presented to demonstrate the feasibility of our designed algorithm.
引用
收藏
页码:119 / 122
页数:4
相关论文
共 50 条
  • [1] Object tracking and object change detection in desktop manipulation for video-based interactive manuals
    Tsubuku, Y
    Nakamura, Y
    Ohta, Y
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 2, PROCEEDINGS, 2004, 3332 : 104 - 112
  • [2] Video-based descriptors for object recognition
    Lee, Taehee
    Soatto, Stefano
    [J]. IMAGE AND VISION COMPUTING, 2011, 29 (10) : 639 - 652
  • [3] Online Video-based Sequence Synchronization for Moving Camera Object Detection
    da Silva, Allan F.
    Thomaz, Lucas A.
    Netto, Sergio L.
    da Silva, Eduardo A. B.
    [J]. 2017 IEEE 19TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2017,
  • [4] A video-based object detection and tracking system for weight sensitive UAVs
    Abughalieh, Karam M.
    Sababha, Belal H.
    Rawashdeh, Nathir A.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (07) : 9149 - 9167
  • [5] A video-based object detection and tracking system for weight sensitive UAVs
    Karam M. Abughalieh
    Belal H. Sababha
    Nathir A. Rawashdeh
    [J]. Multimedia Tools and Applications, 2019, 78 : 9149 - 9167
  • [6] Region Based CNN for Foreign Object Debris Detection on Airfield Pavement
    Cao, Xiaoguang
    Wang, Peng
    Meng, Cai
    Bai, Xiangzhi
    Gong, Guoping
    Liu, Miaoming
    Qi, Jun
    [J]. SENSORS, 2018, 18 (03)
  • [7] Video-based Human-Object Interaction Detection from Tubelet Tokens
    Tu, Danyang
    Sun, Wei
    Min, Xiongkuo
    Zhai, Guangtao
    Shen, Wei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [8] Foreign Object Debris Detection for Optical Imaging Sensors Based on Random Forest
    Jing, Ying
    Zheng, Hong
    Lin, Chang
    Zheng, Wentao
    Dong, Kaihan
    Li, Xiaolong
    [J]. SENSORS, 2022, 22 (07)
  • [9] Foreign Object Debris detection system using GoogLeNet
    Suder, Jakub
    Marciniak, Tomasz
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (11): : 249 - 252
  • [10] Video-based Object Recognition with Weakly Supervised Object Localization
    Liu, Yang
    Kouskouridas, Rigas
    Kim, Tae-Kyun
    [J]. Proceedings 3rd IAPR Asian Conference on Pattern Recognition ACPR 2015, 2015, : 46 - 50