Enhancing Plasmonic Spectral Tunability with Anomalous Material Dispersion

被引:7
|
作者
Zheng, Mengjie [1 ,2 ,3 ]
Yang, Yi [3 ]
Zhu, Di [3 ,4 ]
Chen, Yiqin [1 ,3 ]
Shu, Zhiwen [1 ,3 ]
Berggren, Karl K. [3 ]
Soljacic, Marin [3 ]
Duan, Huigao [1 ,3 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[2] Jihua Lab, Foshan 528000, Peoples R China
[3] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
plasmonics; spectral tunability; anomalous dispersion; color display; metasurfaces; METASURFACE PERFECT ABSORBERS; COLOR FILTERS; LARGE-AREA; NANOPARTICLE; ENHANCEMENT; RESONANCES; SENSOR; MODES;
D O I
10.1021/acs.nanolett.0c03293
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The field confinement of plasmonic systems enables spectral tunability under structural variations or environmental perturbations, which is the principle for various applications including nanorulers, sensors, and color displays. Here, we propose and demonstrate that materials with anomalous dispersion, such as Ge in the visible, improve spectral tunability. We introduce our proposal with a semianalytical guided mode picture. Using Ge-based film (Ag/Au)-coupled gap plasmon resonators, we implement two architectures and demonstrate the improved tunability with single-particle dark-field scattering, ensemble reflection, and color generation. We observe three-fold enhancement of tunability with Ge nanodisks compared with that of Si, a normal-dispersion material in the visible. The structural color generation of large array systems, made of inversely fabricated Ge-Ag resonators, exhibits a wide gamut. Our results introduce anomalous material dispersion as an extra degree of freedom to engineer the spectral tunability of plasmonic systems, especially relevant for actively tunable plasmonics and metasurfaces.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 50 条
  • [1] Spectral tunability of realistic plasmonic nanoantennas
    Portela, Alejandro
    Yano, Takaaki
    Santschi, Christian
    Matsui, Hiroaki
    Hayashi, Tomohiro
    Hara, Masahiko
    Martin, Olivier J. F.
    Tabata, Hitoshi
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (09)
  • [2] Anomalous Dispersion in Plasmonic Nanostructures
    Porta, P. A.
    Corbett, B.
    McInerney, J. G.
    [J]. 2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [3] Spectral tunability of a plasmonic antenna with a dielectric nanocrystal
    Alaverdyan, Yury
    Vamivakas, Nick
    Barnes, Joshua
    Lebouteiller, Claire
    Hare, Jack
    Atatuere, Mete
    [J]. OPTICS EXPRESS, 2011, 19 (19): : 18175 - 18181
  • [4] Plasmonic spectral tunability of conductive ternary nitrides
    Kassavetis, S.
    Bellas, D. V.
    Abadias, G.
    Lidorikis, E.
    Patsalas, P.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (26)
  • [5] Spectral Tunability of Plasmonic Scattering by Silver Nanodiscs near a Reflector
    Sesuraj, R. S. A.
    Temple, T. L.
    Bagnall, D. M.
    [J]. PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES X, 2012, 8457
  • [6] Anomalous dispersion in ultra violet spectral regions
    Aschkinass, E
    [J]. ANNALEN DER PHYSIK, 1900, 1 (01) : 42 - 68
  • [7] Enhancing Tunability of EIT in Plasmonic Split Disk Resonator Using Graphene and Fused Silica
    Azimi, Maryam Khalili
    Saghai, Hassan Rasooli
    [J]. PLASMONICS, 2019, 14 (06) : 1971 - 1981
  • [8] Enhancing Tunability of EIT in Plasmonic Split Disk Resonator Using Graphene and Fused Silica
    Maryam Khalili Azimi
    Hassan Rasooli Saghai
    [J]. Plasmonics, 2019, 14 : 1971 - 1981
  • [9] Separation of close spectral lines by the method of anomalous dispersion
    Holmes, FT
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1936, 26 (10) : 365 - 366
  • [10] SPECTRAL FUNCTIONS IN AMORPHOUS METALS AND THE ANOMALOUS DISPERSION OF ELECTRONS
    MORGAN, GJ
    WEIR, GF
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1983, 47 (02): : 177 - 181