Marginal integration M-estimators for additive models

被引:5
|
作者
Boente, Graciela [1 ,2 ]
Martinez, Alejandra [1 ,2 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
关键词
Additive models; Local M-estimation; Kernel weights; Marginal integration; Robustness; ROBUST NONPARAMETRIC REGRESSION; SELECTION;
D O I
10.1007/s11749-016-0508-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Additive regression models have a long history in multivariate non-parametric regression. They provide a model in which the regression function is decomposed as a sum of functions, each of them depending only on a single explanatory variable. The advantage of additive models over general non-parametric regression models is that they allow to obtain estimators converging at the optimal univariate rate avoiding the so-called curse of dimensionality. Beyond backfitting, marginal integration is a common procedure to estimate each component in additive models. In this paper, we propose a robust estimator of the additive components which combines local polynomials on the component to be estimated with the marginal integration procedure. The proposed estimators are consistent and asymptotically normally distributed. A simulation study allows to show the advantage of the proposal over the classical one when outliers are present in the responses, leading to estimators with good robustness and efficiency properties.
引用
收藏
页码:231 / 260
页数:30
相关论文
共 50 条
  • [1] Marginal integration M-estimators for additive models
    Graciela Boente
    Alejandra Martínez
    [J]. TEST, 2017, 26 : 231 - 260
  • [2] APPROXIMATIONS FOR MARGINAL DENSITIES OF M-ESTIMATORS
    FAN, RYK
    FIELD, CA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1995, 23 (02): : 185 - 197
  • [3] M-estimators and Simulations with GARCH Models
    Meng Zhaowei
    Sun Congcong
    [J]. MANAGEMENT ENGINEERING AND APPLICATIONS, 2010, : 685 - 689
  • [4] M-estimators of structural parameters in pseudolinear models
    Liese F.
    Vajda I.
    [J]. Applications of Mathematics, 1999, 44 (4) : 245 - 270
  • [5] M-estimators of structural parameters in pseudolinear models
    Liese, Friedrich
    Vajda, Igor
    [J]. Applications of Mathematics, 44 (04): : 245 - 270
  • [6] Redescending M-estimators
    Shevlyakov, Georgy
    Morgenthaler, Stephan
    Shurygin, Alexander
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 2906 - 2917
  • [7] ON BOOTSTRAPPING M-ESTIMATORS
    LAHIRI, SN
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 157 - 170
  • [8] Consistency of M-estimators of nonlinear signal processing models
    Mahata, Kaushik
    Mitra, Amit
    Mitra, Sharmishtha
    [J]. STATISTICAL METHODOLOGY, 2016, 28 : 18 - 36
  • [9] Characterizing M-estimators
    Dimitriadis, Timo
    Fissler, Tobias
    Ziegel, Johanna
    [J]. BIOMETRIKA, 2024, 111 (01) : 339 - 346
  • [10] ON INCONSISTENT M-ESTIMATORS
    FREEDMAN, DA
    DIACONIS, P
    [J]. ANNALS OF STATISTICS, 1982, 10 (02): : 454 - 461