Stokes Problem for Second-order Liquid

被引:0
|
作者
Pukhnacheva, T. P. [1 ]
机构
[1] Novosibirsk State Univ, Novosibirsk, Russia
关键词
D O I
10.1063/1.5130802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let the liquid fill the space outside the cylinder, which makes longitudinal harmonic oscillations. The resulting problem for second-order fluid has a periodic time decision. The field of velocities and pressures is found in a wide range of governing parameters - the Reynolds number and relaxation parameter. Unlike the second Stokes problem for an ordinary viscous fluid (V.I. Bukreev (1988), [7]) where the pressure is constant, in a second-order fluid it oscillates at twice the frequency. This effect can be used to identify a model which is used in describing the motion of aqueous solutions of polymers.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] STOKES PARADOX IN SECOND-ORDER FLUIDS
    HUILGOL, RR
    TAO, LN
    PHYSICS OF FLUIDS, 1974, 17 (07) : 1468 - 1468
  • [2] Structure and particle transport in second-order Stokes flow
    Keanini, RG
    PHYSICAL REVIEW E, 2000, 61 (06): : 6606 - 6620
  • [3] Structure and particle transport in second-order stokes flow
    Keanini, Russell G.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (06): : 6606 - 6620
  • [4] Extension of second-order Stokes theory to variable bathymetry
    Belibassakis, KA
    Athanassoulis, GA
    JOURNAL OF FLUID MECHANICS, 2002, 464 : 35 - 80
  • [5] Second-order Taylor Expansion Boundary Element Method for the second-order wave diffraction problem
    Duan, Wenyang
    Chen, Jikang
    Zhao, Binbin
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 58 : 140 - 150
  • [6] Second-order Taylor expansion boundary element method for the second-order wave radiation problem
    Duan, W. Y.
    Chen, J. K.
    Zhao, B. B.
    APPLIED OCEAN RESEARCH, 2015, 52 : 12 - 26
  • [7] On a problem related to second-order Diophantine equations
    Lipin, A. E.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2019, 54 : 38 - 44
  • [8] DETERMINATION OF A COEFFICIENT IN A SECOND-ORDER HYPERBOLIC PROBLEM
    Coskun, Arzu Erdem
    JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (02): : 102 - 112
  • [9] On a Control Problem for a Nonlinear Second-Order System
    Blizorukova, M. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 : S22 - S28
  • [10] The second-order cone eigenvalue complementarity problem
    Fernandes, Luis M.
    Fukushima, Masao
    Judice, Joaquim J.
    Sherali, Hanif D.
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (01): : 24 - 52