On the non-standard distribution of empirical likelihood estimators with spatial data

被引:2
|
作者
Van Hala, Matthew [1 ]
Bandyopadhyay, Soutir [2 ]
Lahiri, Soumendra N. [3 ]
Nordman, Daniel J. [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[3] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Discrete Fourier transform; Frequency domain empirical likelihood; Periodogram; Stochastic sampling; ASYMPTOTIC DISTRIBUTIONS;
D O I
10.1016/j.jspi.2017.02.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This note highlights some unusual and unexpected behavior in point estimation using empirical likelihood (EL). In particular, frequency domain formulations of EL, based on the periodogram and estimating functions, have been proposed in the literature for time and spatial processes. However, in contrast to the time series case and most applications of EL, the maximum EL parameter estimator exhibits surprisingly non-standard asymptotic properties for irregularly located spatial data. In fact, a consistent normal limit cannot be guaranteed, as is typical for EL. Despite this, log-ratio EL statistics maintain standard chi-square limits with such spatial data. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 114
页数:6
相关论文
共 50 条
  • [1] ESTIMATION ACCURACY OF NON-STANDARD MAXIMUM LIKELIHOOD ESTIMATORS
    Kbayer, N.
    Galy, J.
    Chaumette, E.
    Vincent, F.
    Renaux, A.
    Larzabal, P.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4461 - 4465
  • [2] Proving consistency of non-standard kernel estimators
    Mason D.M.
    [J]. Statistical Inference for Stochastic Processes, 2012, 15 (2) : 151 - 176
  • [3] M-estimators with non-standard rates of convergence and weakly dependent data
    Caner, M
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (04) : 1207 - 1219
  • [4] MAXIMUM-LIKELIHOOD ESTIMATION IN NON-STANDARD CONDITIONS
    MORAN, PAP
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (NOV): : 441 - &
  • [5] Non-standard random fractals for empirical increments
    Lucas, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (08): : 641 - 644
  • [6] Empirical influence functions and their non-standard applications
    Duchnowski, Robert
    Wyszkowska, Patrycja
    [J]. JOURNAL OF APPLIED GEODESY, 2022, 16 (01) : 9 - 23
  • [7] A PARAMETRIC FAMILY OF BAYESIAN ESTIMATORS FOR NON-STANDARD LOSS FUNCTIONS
    Uhlich, Stefan
    Yang, Bin
    [J]. 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 631 - 635
  • [8] Non-standard behavior of density estimators for sums of squared observations
    Schick, Anton
    Wefelmeyer, Wolfgang
    [J]. STATISTICS & RISK MODELING, 2009, 27 (01) : 55 - 73
  • [9] Empirical likelihood estimators for the error distribution in nonparametric regression models
    Kiwitt S.
    Nagel E.-R.
    Neumeyer N.
    [J]. Mathematical Methods of Statistics, 2008, 17 (3) : 241 - 260
  • [10] Non-standard dialects and linguistic data
    Henry, A
    [J]. LINGUA, 2005, 115 (11) : 1599 - 1617