Peptide length-based prediction of peptide-MHC class II binding

被引:46
|
作者
Chang, Stewart T.
Ghosh, Debashis
Kirschner, Denise E.
Linderman, Jennifer J. [1 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Program Bioinformat, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1093/bioinformatics/btl479
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Algorithms for predicting peptide-MHC class II binding are typically similar, if not identical, to methods for predicting peptide-MHC class I binding despite known differences between the two scenarios. We investigate whether representing one of these differences, the greater range of peptide lengths binding MHC class II, improves the performance of these algorithms. Results: A non-linear relationship between peptide length and peptide-MHC class II binding affinity was identified in the data available for several MHC class II alleles. Peptide length was incorporated into existing prediction algorithms using one of several modifications: using regression to pre-process the data, using peptide length as an additional variable within the algorithm, or representing register shifting in longer peptides. For several datasets and at least two algorithms these modifications consistently improved prediction accuracy. Availability: http://malthus.micro.med.umich.edu/Bioinformatics Contact: linderma@umich.edu.
引用
收藏
页码:2761 / 2767
页数:7
相关论文
共 50 条
  • [1] Improving peptide-MHC class I binding prediction for unbalanced datasets
    Ana Paula Sales
    Georgia D Tomaras
    Thomas B Kepler
    [J]. BMC Bioinformatics, 9
  • [2] Improving peptide-MHC class I binding prediction for unbalanced datasets
    Sales, Ana Paula
    Tomaras, Georgia D.
    Kepler, Thomas B.
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [3] A Review on the Methods of Peptide-MHC Binding Prediction
    Liu, Yang
    Ouyang, Xia-hui
    Xiao, Zhi-Xiong
    Zhang, Le
    Cao, Yang
    [J]. CURRENT BIOINFORMATICS, 2020, 15 (08) : 878 - 888
  • [4] Description and prediction of peptide-MHC binding: the 'human MHC project'
    Buus, S
    [J]. CURRENT OPINION IN IMMUNOLOGY, 1999, 11 (02) : 209 - 213
  • [5] The lifespan of peptide-MHC class II complexes on live antigen presenting cells: The effect of peptide length
    Siklodi, B
    Falcioni, F
    Bolin, D
    Campbell, RM
    Nagy, ZA
    [J]. FASEB JOURNAL, 1996, 10 (06): : 1225 - 1225
  • [6] Quantitative analysis of peptide-MHC class II interaction
    Fleckenstein, B
    Jung, G
    Wiesmüller, KH
    [J]. SEMINARS IN IMMUNOLOGY, 1999, 11 (06) : 405 - 416
  • [7] Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes
    Bordner, AJ
    Abagyan, R
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 63 (03) : 512 - 526
  • [8] MHCPred: a server for quantitative prediction of peptide-MHC binding
    Guan, PP
    Doytchinova, IA
    Zygouri, C
    Flower, DR
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (13) : 3621 - 3624
  • [9] Frontiers in peptide-MHC class II multimer technology
    Hackett, CJ
    Sharma, OK
    [J]. NATURE IMMUNOLOGY, 2002, 3 (10) : 887 - 889
  • [10] HLA-DM Senses Peptide-MHC Class II Interactions Throughout the Peptide Binding Groove
    Reyes-Vargas, Eduardo
    Barker, Adam P.
    Zhou, Zemin
    He, Xiao
    Jensen, Peter E.
    [J]. FASEB JOURNAL, 2017, 31