The Chekanov torus in S2 x S2 is not real

被引:0
|
作者
Kim, Joontae [1 ]
机构
[1] Korea Inst Adv Study, 85 Hoegiro, Seoul 02455, South Korea
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the count of Maslov index 2 J-holomorphic discs passing through a generic point of a real Lagrangian submanifold with minimal Maslov number at least two in a closed spherically monotone symplectic manifold must be even. As a corollary, we exhibit a genuine real symplectic phenomenon in terms of involutions, namely that the Chekanov torus T-Chek in S-2 x S-2, which is a monotone Lagrangian torus not Hamiltonian isotopic to the Clifford torus T-Clif, can be seen as the fixed point set of a smooth involution, but not of an antisymplectic involution.
引用
收藏
页码:121 / 142
页数:22
相关论文
共 50 条
  • [2] ON REAL HYPERSURFACES OF S2 x S2
    Gao, Dong
    Hu, Zejun
    Ma, Hui
    Yao, Zeke
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4447 - 4461
  • [3] Unknottedness of real Lagrangian tori in S2 x S2
    Kim, Joontae
    [J]. MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 891 - 905
  • [4] On hypersurfaces of S2 X S2
    Urbano, Francisco
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (06) : 1381 - 1416
  • [5] On the Geometry of Hypersurfaces in S2 x S2
    Lu, Xiaoge
    Wang, Peng
    Wang, Xiaozhen
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [6] Minimal Surfaces in S2 x S2
    Torralbo, Francisco
    Urbano, Francisco
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1132 - 1156
  • [7] Conformally formal manifolds and the uniformly quasiregular non-ellipticity of (S2 x S2)#(S2 x S2)
    Kangasniemi, Ilmari
    [J]. ADVANCES IN MATHEMATICS, 2021, 393
  • [8] Stability of fuzzy S2 x S2 x S2 in IIB type matrix models
    Kaneko, H
    Kitazawa, Y
    Tomino, D
    [J]. NUCLEAR PHYSICS B, 2005, 725 (1-2) : 93 - 114
  • [9] Almost complex structures on S2 x S2
    McDuff, D
    [J]. DUKE MATHEMATICAL JOURNAL, 2000, 101 (01) : 135 - 177
  • [10] Tight Lagrangian surfaces in S2 x S2
    Iriyeh, Hiroshi
    Sakai, Takashi
    [J]. GEOMETRIAE DEDICATA, 2010, 145 (01) : 1 - 17