Interpretation of results of SOM analysis of microarray data by principal components

被引:0
|
作者
Efimov, V. M. [1 ]
Badratinov, M. S. [1 ]
Katokhin, A. V. [1 ]
机构
[1] Russian Acad Sci, Inst Systemat & Ecol Anim, SB, Novosibirsk 630090, Russia
关键词
microarray data; SOM (self-organizing maps) analysis; PCA (principal components analysis); visualization;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Microarray technology provides a massively parallel means to study gene expression on a global scale. There are many challenges associated with the analysis of microarray data due to its inherent complexity and high dimensionality. Although there is a diverse range of analytical techniques available for finding groups in gene expression data, clustering and partitioning are currently the key areas of microarray data mining. Combining the analytical techniques could provide new ways to improve grouping quality and interpretability. Results: We applied the method of principal components to a united sample of gene expression profiles, presented by Borovecki et al. (2005), and the centers of SOM clusters that we calculated. This allowed us to give a meaningful interpretation to the clusters obtained.
引用
收藏
页码:44 / +
页数:2
相关论文
共 50 条
  • [1] Permutation-validated principal components analysis of microarray data
    Landgrebe, Jobst
    Wurst, Wolfgang
    Welzl, Gerhard
    GENOME BIOLOGY, 2002, 3 (04):
  • [2] Permutation-validated principal components analysis of microarray data
    Jobst Landgrebe
    Wolfgang Wurst
    Gerhard Welzl
    Genome Biology, 3 (4)
  • [3] Interpretation of the results of common principal components analyses
    Houle, D
    Mezey, J
    Galpern, P
    EVOLUTION, 2002, 56 (03) : 433 - 440
  • [4] A Genealogical Interpretation of Principal Components Analysis
    McVean, Gil
    PLOS GENETICS, 2009, 5 (10):
  • [5] The influence of the irregularly spaced data on the principal components analysis results
    Bejaran, RA
    Escobar, GCJ
    13TH CONFERENCE ON PROBABILITY AND STATISTICS IN THE ATMOSPHERIC SCIENCES, 1996, : 102 - 105
  • [6] Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data
    Lenz, Michael
    Mueller, Franz-Josef
    Zenke, Martin
    Schuppert, Andreas
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Principal components analysis and the reported low intrinsic dimensionality of gene expression microarray data
    Michael Lenz
    Franz-Josef Müller
    Martin Zenke
    Andreas Schuppert
    Scientific Reports, 6
  • [8] Intelligent system for the analysis of microarray data using principal components and estimation of distribution algorithms
    Cano, C.
    Garcia, F.
    Lopez, F. J.
    Blanco, A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 4654 - 4663
  • [9] Penalized Principal Component Analysis of Microarray Data
    Nikulin, Vladimir
    McLachlan, Geoffrey J.
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, 2010, 6160 : 82 - 96
  • [10] SOM: Stochastic initialization versus principal components
    Akinduko, Ayodeji A.
    Mirkes, Evgeny M.
    Gorban, Alexander N.
    INFORMATION SCIENCES, 2016, 364 : 213 - 221