Unsupervised Outlier Detection via Transformation Invariant Autoencoder

被引:11
|
作者
Cheng, Zhen [1 ]
Zhu, En [1 ]
Wang, Siqi [1 ]
Zhang, Pei [1 ]
Li, Wang [1 ]
机构
[1] Natl Univ Def Technol, Sch Comp, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly detection; Training; Image reconstruction; Image restoration; Deep learning; Data models; Task analysis; Deep Learning; unsupervised outlier detection; autoencoder; transformation invariant autoencoder;
D O I
10.1109/ACCESS.2021.3065838
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autoencoder based methods are the majority of deep unsupervised outlier detection methods. However, these methods perform not well on complex image datasets and suffer from the noise introduced by outliers, especially when the outlier ratio is high. In this paper, we propose a framework named Transformation Invariant AutoEncoder (TIAE), which can achieve stable and high performance on unsupervised outlier detection. First, instead of using a conventional autoencoder, we propose a transformation invariant autoencoder to do better representation learning for complex image datasets. Next, to mitigate the negative effect of noise introduced by outliers and stabilize the network training, we select the most confident inliers likely examples in each epoch as the training set by incorporating adaptive self-paced learning in our TIAE framework. Extensive evaluations show that TIAE significantly advances unsupervised outlier detection performance by up to 10% AUROC against other autoencoder based methods on five image datasets.
引用
收藏
页码:43991 / 44002
页数:12
相关论文
共 50 条
  • [1] Graph autoencoder-based unsupervised outlier detection
    Du, Xusheng
    Yu, Jiong
    Chu, Zheng
    Jin, Lina
    Chen, Jiaying
    [J]. INFORMATION SCIENCES, 2022, 608 : 532 - 550
  • [2] Unsupervised Boosting-Based Autoencoder Ensembles for Outlier Detection
    Sarvari, Hamed
    Domeniconi, Carlotta
    Prenkaj, Bardh
    Stilo, Giovanni
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 91 - 103
  • [3] A Unified Unsupervised Gaussian Mixture Variational Autoencoder for High Dimensional Outlier Detection
    Liao, Weixian
    Guo, Yifan
    Chen, Xuhui
    Li, Pan
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1208 - 1217
  • [4] Autoencoder Watchdog Outlier Detection for Classifiers
    Bui, Justin
    Marks, Robert J., II
    [J]. ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 990 - 996
  • [5] A Latent Feature Autoencoder via Adversarial Training for Unsupervised Anomaly Detection
    Tang, Wei
    Li, Jun
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2718 - 2723
  • [6] Unsupervised outlier detection in multidimensional data
    Atiq ur Rehman
    Samir Brahim Belhaouari
    [J]. Journal of Big Data, 8
  • [7] RDPOD: an unsupervised approach for outlier detection
    Abhaya Abhaya
    Bidyut Kr. Patra
    [J]. Neural Computing and Applications, 2022, 34 : 1065 - 1077
  • [8] An efficient method for autoencoder based outlier detection
    Abhaya, Abhaya
    Patra, Bidyut Kr.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [9] A new unsupervised outlier detection method
    Zheng, Lina
    Chen, Lijun
    Wang, Yini
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1713 - 1734
  • [10] Internal Evaluation of Unsupervised Outlier Detection
    Marques, Henrique O.
    Campello, Ricardo J. G. B.
    Sander, Jorg
    Zimek, Arthur
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (04)