Modeling statistical dependencies in multi-region spike train data

被引:15
|
作者
Keeley, Stephen L. [1 ]
Zoltowski, David M. [1 ]
Aoi, Mikio C. [1 ]
Pillow, Jonathan W. [1 ]
机构
[1] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08544 USA
关键词
CROSS-CORRELATION ANALYSIS; INTERNEURONAL CONNECTIVITY; ENSEMBLE;
D O I
10.1016/j.conb.2020.11.005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neural computations underlying cognition and behavior rely on the coordination of neural activity across multiple brain areas. Understanding how brain areas interact to process information or generate behavior is thus a central question in neuroscience. Here we provide an overview of statistical approaches for characterizing statistical dependencies in multi-region spike train recordings. We focus on two classes of models in particular: regression-based models and shared latent variable models. Regression-based models describe interactions in terms of a directed transformation of information from one region to another. Shared latent variable models, on the other hand, seek to describe interactions in terms of sources that capture common fluctuations in spiking activity across regions. We discuss the advantages and limitations of each of these approaches and future directions for the field. We intend this review to be an introduction to the statistical methods in multi-region models for computational neuroscientists and experimentalists alike.
引用
收藏
页码:194 / 202
页数:9
相关论文
共 50 条
  • [1] Towards statistical summaries of spike train data
    Wu, Wei
    Srivastava, Anuj
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2011, 195 (01) : 107 - 110
  • [2] Multi-region solar cell modeling
    Pfleiderer, H
    Bullemer, B
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1997, 46 (01) : 17 - 27
  • [3] Statistical multi-region snake-based segmentation
    Germain, O
    Réfrégier, P
    [J]. MATHEMATICAL MODELING, ESTIMATION, AND IMAGING, 2000, 4121 : 1 - 10
  • [4] Multi-Region Statistical Shape Model for Cochlear Implantation
    Romera, Jordi
    Kjer, H. Martin
    Piella, Gemma
    Ceresa, Mario
    Ballestera, Miguel A. Gonzalez
    [J]. MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [5] Statistical modeling of observational data with spatial dependencies
    Christman, Mary C.
    [J]. JOURNAL OF WILDLIFE MANAGEMENT, 2008, 72 (01): : 23 - 33
  • [6] Modeling functional cell types in spike train data
    Zdeblick, Daniel N.
    Shea-Brown, Eric T.
    Witten, Daniela M.
    Buice, Michael A.
    [J]. PLoS Computational Biology, 2023, 19 (10 October)
  • [7] STATISTICAL-ANALYSIS AND STOCHASTIC MODELING OF NEURONAL SPIKE TRAIN ACTIVITY
    DEKWAADSTENIET, JW
    [J]. MATHEMATICAL BIOSCIENCES, 1982, 60 (01) : 17 - 71
  • [8] Machine learning statistical gravity from multi-region entanglement entropy
    Lam, Jonathan
    You, Yi-Zhuang
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [9] Data Structures Supporting Multi-region Adaptive Isogeometric Analysis
    Perduta, Anna
    Putanowicz, Roman
    [J]. COMPUTER METHODS IN MECHANICS (CMM2017), 2018, 1922
  • [10] A Unified Approach to Linking Experimental, Statistical and Computational Analysis of Spike Train Data
    Meng, Liang
    Kramer, Mark A.
    Middleton, Steven J.
    Whittington, Miles A.
    Eden, Uri T.
    [J]. PLOS ONE, 2014, 9 (01):