Semi-Supervised Classification of Terrain Features in Polarimetric SAR Images using H/A/(α)over-bar and the General Four-Component Scattering Power Decompositions

被引:0
|
作者
Dauphin, Stephen [1 ,2 ]
West, R. Derek [2 ]
Riley, Robert [2 ]
Simonson, Katherine M. [2 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Sandia Natl Labs, Albuquerque, NM 87123 USA
关键词
MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In an effort to enhance image classification of terrain features in fully polarimetric SAR images, this paper explores the utility of combining the results of two state-of-the-art decompositions along with a semi-supervised classification algorithm to classify each pixel in an image. Each pixel is labeled either with a pre-determined classification label, or labeled as unknown.
引用
收藏
页码:167 / 171
页数:5
相关论文
共 3 条
  • [1] Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network
    Wang R.
    Wang Y.
    Journal of Radars, 2021, 10 (04) : 516 - 580
  • [2] SEMI-SUPERVISED CLASSIFICATION OF POLARIMETRIC SAR IMAGES USING MARKOV RANDOM FIELD AND TWO-LEVEL WISHART MIXTURE MODEL
    Liu, Chi
    Liao, Wenzhi
    Li, Heng-Chao
    Wang, Rui
    Philips, Wilfried
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 990 - 993
  • [3] Sandbank and Oyster Farm Monitoring with Multi-Temporal Polarimetric SAR Data Using Four-Component Scattering Power Decomposition
    Cheng, Tzu-Yu
    Yamaguchi, Yoshio
    Chen, Kun-Shan
    Lee, Jong-Sen
    Cui, Yi
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2013, E96B (10) : 2573 - 2579