Mineral identification in LWIR hyperspectral imagery applying sparse-based clustering

被引:4
|
作者
Yousefi, Bardia [1 ]
Castanedo, Clemente Ibarra [1 ]
Bedard, Emilie [2 ,3 ]
Beaudoin, Georges [2 ,3 ]
Maldague, Xavier P. V. [1 ]
机构
[1] Laval Univ, Comp Vis & Syst Lab, Dept Elect & Comp Engn, Quebec City, PQ G1V 0A6, Canada
[2] Laval Univ, Dept Geol & Geol Engn, Quebec City, PQ, Canada
[3] Laval Univ, Ctr Rech Geol & Ingn Ressources Minerales, Quebec City, PQ, Canada
关键词
Hyperspectral imagery; mineral identification; sparse principle components analysis; clustering; K-MEANS; VARIABLE SELECTION; KERNEL PCA; VALIDATION; REMOVAL;
D O I
10.1080/17686733.2018.1550902
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An assessment of mineral identification applying hyperspectral infrared imagery in laboratory conditions is presented here and strives to identify nine different minerals (biotite, diopside, epidote, goethite, kyanite, scheelite, smithsonite, tourmaline, quartz). A hyperspectral camera in Long-Wave Infrared (LWIR, 7.7-11.8 m) with a LW-macro lens, an infragold plate, and a heating source are instruments used in the experiment. For automated identification, a Sparse Principal Component Analysis (Sparse PCA)-based K-means clustering is employed to categorise all pixel-spectra in different groups. Then the best representatives of each cluster (using spectral averaging) are chosen to compare these spectra to ASTER spectral library of JPL/NASA through spectral comparison techniques. Spectral angle mapper (SAM) and Normalized Cross Correlation (NCC) are two of such techniques, which are used herein to measure the spectral difference. In order to evaluate robustness of clustering results among the minerals spectra, we have added three levels of Gaussian and salt&pepper noise, , and , to input spectra which dropped the accuracy percentage from more than 84.73, for 0 added noise, to 44.57, for 2 average of both additive noise, and 22.21, for 4 additive noise. The results conclusively indicate a promising performance but noise sensitive behaviour of the proposed approach.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
  • [1] Modified algorithm for mineral identification in LWIR hyperspectral imagery
    Yousefi, Bardia
    Sojasi, Saeed
    Liaigre, Kevin
    Castanedo, Clemente Ibarra
    Beaudoin, Georges
    Huot, Francois
    Maldague, Xavierp V.
    Chamberland, Martin
    [J]. THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXIX, 2017, 10214
  • [2] Assessing the reliability of an automated system for mineral identification using LWIR Hyperspectral Infrared imagery
    Yousefi, Bardia
    Castanedo, Clemente Ibarra
    Maldague, Xavier P., V
    Beaudoin, Georges
    [J]. MINERALS ENGINEERING, 2020, 155
  • [3] Spline Based Emissivity Retrieval for LWIR Hyperspectral Imagery
    McElhinney, O.
    Pieper, M. L.
    Manolakis, D.
    Loughlin, C.
    Ingle, V
    Bostick, Randall
    Weisner, A.
    [J]. ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVIII, 2022, 12094
  • [4] Comparison assessment of low rank sparse-PCA based-clustering/classification for automatic mineral identification in long wave infrared hyperspectral imagery
    Yousefi, Bardia
    Sojasi, Saeed
    Castanedo, Clemente Ibarra
    Maldague, Xavier P., V
    Beaudoin, Georges
    Chamberland, Martin
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2018, 93 : 103 - 111
  • [5] DPSB model-based clustering algorithm for mineral mapping in hyperspectral imagery
    Yousefi, Mastoureh
    Tabatabaei, Seyed Hassan
    Pour, Amin Beiranvand
    Pradhan, Biswajeet
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5470 - 5472
  • [6] Multi-Objective Sparse Subspace Clustering for Hyperspectral Imagery
    Wan, Yuting
    Zhong, Yanfei
    Ma, Ailong
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2290 - 2307
  • [7] A discriminated similarity matrix construction based on sparse subspace clustering algorithm for hyperspectral imagery
    Yan, Qing
    Ding, Yun
    Zhang, Jing-Jing
    Xia, Yi
    Zheng, Chun-Hou
    [J]. COGNITIVE SYSTEMS RESEARCH, 2019, 53 : 98 - 110
  • [8] Continuum removal for ground-based LWIR hyperspectral infrared imagery applying non-negative matrix factorization
    Yousefi, Bardia
    Sojasi, Saeed
    Castanedo, Clemente Ibarra
    Maldague, Xavier P. V.
    Beaudoin, Georges
    Chamberland, Martin
    [J]. APPLIED OPTICS, 2018, 57 (21) : 6219 - 6228
  • [9] Similarity Matrix Construction Methods in Sparse Subspace Clustering Algorithm for Hyperspectral Imagery Clustering
    Yan, Qing
    Ding, Yun
    Zhang, Jing-Jing
    Xun, Li-Na
    Zheng, Chun-Hou
    [J]. INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT I, 2017, 10361 : 695 - 700
  • [10] Graph and Sparse-Based Robust Nonnegative Block Value Decomposition for Clustering
    Salehani, Yaser Esmaeili
    Arabnejad, Ehsan
    Cheriet, Mohamed
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1561 - 1574