Autoencoding Graph Neural Networks for Scalable Transceiver Design

被引:0
|
作者
Kim, Junbeom [1 ]
Lee, Hoon [2 ]
Park, Seok-Hwan [1 ]
机构
[1] Jeonbuk Natl Univ, Div Elect Engn, Jeonju 54896, South Korea
[2] Pukyong Natl Univ, Dept Informat & Commun Engn, Busan 48513, South Korea
基金
新加坡国家研究基金会;
关键词
Graph neural network; autoencoder; deep learning; symbol error rate; scalable transceiver design;
D O I
10.1109/VTC2022-Fall57202.2022.10012954
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Autoencoder (AE) techniques have been intensively studied for the optimization of wireless transceivers. However, fixed computational structures of existing AE models lack the flexibility to the lengths of message bits and codewords. This work proposes a versatile AE framework, termed by autoencoding graph neural network (AEGNN), where both encoder and decoder are realized by GNNs. The viability of the proposed AEGNN is demonstrated in various application scenarios.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Scalable Spatiotemporal Graph Neural Networks
    Cini, Andrea
    Marisca, Ivan
    Bianchi, Filippo Maria
    Alippi, Cesare
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7218 - 7226
  • [2] Scalable Graph Neural Networks with Deep Graph Library
    Zheng, Da
    Wang, Minjie
    Gan, Quan
    Song, Xiang
    Zhang, Zheng
    Karypis, Geroge
    [J]. WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1141 - 1142
  • [3] Scalable Graph Neural Networks with Deep Graph Library
    Zheng, Da
    Wang, Minjie
    Gan, Quan
    Zhang, Zheng
    Karypis, Geroge
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3521 - 3522
  • [4] Graph Batch Coarsening framework for scalable graph neural networks
    Zhang, Shengzhong
    Zhang, Yimin
    Li, Bisheng
    Yang, Wenjie
    Zhou, Min
    Huang, Zengfeng
    [J]. Neural Networks, 2025, 183
  • [5] Graph Neural Networks for Scalable Radio Resource Management: Architecture Design and Theoretical Analysis
    Shen, Yifei
    Shi, Yuanming
    Zhang, Jun
    Letaief, Khaled B.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (01) : 101 - 115
  • [6] A Scalable AutoML Approach Based on Graph Neural Networks
    Helali, Mossad
    Mansour, Essam
    Abdelaziz, Ibrahim
    Dolby, Julian
    Srinivas, Kavitha
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 2428 - 2436
  • [7] SCALABLE FINANCIAL INDEX TRACKING WITH GRAPH NEURAL NETWORKS
    Zhang, Zepeng
    Zhao, Ziping
    [J]. 2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 546 - 550
  • [8] GRAND plus : Scalable Graph Random Neural Networks
    Feng, Wenzheng
    Dong, Yuxiao
    Huang, Tinglin
    Yin, Ziqi
    Cheng, Xu
    Kharlamov, Evgeny
    Tang, Jie
    [J]. PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 3248 - 3258
  • [9] Scalable Graph Neural Networks via Bidirectional Propagation
    Chen, Ming
    Wei, Zhewei
    Ding, Bolin
    Li, Yaliang
    Yuan, Ye
    Du, Xiaoyong
    Wen, Ji-Rong
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [10] Accurate, efficient and scalable training of Graph Neural Networks
    Zeng, Hanqing
    Zhou, Hongkuan
    Srivastava, Ajitesh
    Kannan, Rajgopal
    Prasanna, Viktor
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2021, 147 : 166 - 183