ReFuzzTiD: A Recurrent Neurofuzzy Model for Anomaly Detection in Time Series

被引:0
|
作者
Kandilogiannakis, George [1 ]
Mastorocostas, Paris [1 ]
机构
[1] Univ West Attica, Dept Informat & Comp Engn, Egaleo, Greece
关键词
time series anomaly detection; neurofuzzy model; recurrent neural network; internal feedback; NEURAL-NETWORKS; FUZZY; SYSTEM;
D O I
10.1109/ijcnn48605.2020.9206821
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a recurrent neurofuzzy model is proposed, for time series anomaly detection. ReFuzzTiD comprises fuzzy rules whose consequent parts are simple three- layer neural networks with internal feedback at the neurons of the hidden layer. ReFuzzTid is trained by the Simulated Annealing Dynamic Resilient Propagation algorithm. The model learns the dynamics of the time series such that it can classify them by detecting the anomaly points. A comparative analysis with a series of time series anomaly detection models is given, highlighting the characteristics of the proposed detector.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    [J]. PEERJ COMPUTER SCIENCE, 2024, 10
  • [2] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    [J]. PeerJ Computer Science, 2024, 10
  • [3] Anomaly Detection Based on Convolutional Recurrent Autoencoder for IoT Time Series
    Yin, Chunyong
    Zhang, Sun
    Wang, Jin
    Xiong, Neal N.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (01): : 112 - 122
  • [4] Clustering model for anomaly detection in time series sets
    Leng, Mingwei
    Lai, Xinsheng
    Liu, Yingdong
    [J]. Journal of Information and Computational Science, 2010, 7 (01): : 85 - 93
  • [5] Time series prediction and anomaly detection with recurrent spiking neural networks
    Cherdo, Yann
    Miramond, Benoit
    Pegatoquet, Alain
    [J]. 2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [6] A Generative Model for Anomaly Detection in Time Series Data
    Hoh, Maximilian
    Schoettl, Alfred
    Schaub, Henry
    Wenninger, Franz
    [J]. 3RD INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, 2022, 200 : 629 - 637
  • [7] Time series anomaly detection in power electronics signals with recurrent and ConvLSTM autoencoders
    Radaideh, Majdi I.
    Pappas, Chris
    Walden, Jared
    Lu, Dan
    Vidyaratne, Lasitha
    Britton, Thomas
    Rajput, Kishansingh
    Schram, Malachi
    Cousineau, Sarah
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 130
  • [8] Anomaly Detection in Time Series with Robust Variational Quasi-Recurrent Autoencoders
    Kieu, Tung
    Yang, Bin
    Guo, Chenjuan
    Cirstea, Razvan-Gabriel
    Zhao, Yan
    Song, Yale
    Jensen, Christian S.
    [J]. 2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1342 - 1354
  • [9] Model-centered Ensemble for Anomaly Detection in Time Series
    Trentini, Erick L.
    Coelho da Silva, Ticiana L.
    Melo Junior, Leopoldo
    de Macedo, Jose F.
    [J]. ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 700 - 707
  • [10] Anomaly detection via a combination model in time series data
    Yanjun Zhou
    Huorong Ren
    Zhiwu Li
    Naiqi Wu
    Abdulrahman M. Al-Ahmari
    [J]. Applied Intelligence, 2021, 51 : 4874 - 4887