Salinity is an abiotic stress factor and a major challenge that has significant negative effects on wheat production. It is also a source of concern for plant breeders leading them to reach reliable screening criteria for salt tolerance in wheat genotypes. The physiological analysis showed that the three salttolerant wheat genotypes viz., Dijla, 2H, and 3H showed the highest rate for the physiological traits i.e., chlorophyll content ( 38.9, 39.5, and 42.1, respectively), carbohydrates (600.14, 590.6, 560.8: 2H, 3H, and Dijla, respectively), proline acid (24.30, 23.14, and 21.87: Dijla, 3H, and 2H, respectively) under salt stress conditions, except protein percentage (3.8% and 3.3%: Rabia and Ibaa99, respectively) and K+/ Na+ ratio (6.3 and 5.9: 2H and Dijla, respectively). The salt-tolerant wheat genotypes 2H, Dijla, and 3H enunciated an increased rate of expression of salt-related genes (TaOPR1 gene and beta-actin gene) with values of 6.498, 4.0, and 3.768, respectively compared to two other salinity-sensitive cultivars i.e., Ibaa99 and Rabia under salt stress conditions. The salinity-sensitive cultivars i.e., Ibaa99 and Rabia showed no gene expression and significant difference with the control treatment after being treated with salinity stress conditions.