Robust ellipse fitting via alternating direction method of multipliers

被引:17
|
作者
Liang, Junli [1 ]
Li, Pengliang [1 ]
Zhou, Deyun [1 ]
So, H. C. [2 ,4 ]
Liu, Ding [3 ]
Leung, Chi-Sing [2 ]
Sui, Liansheng [3 ]
机构
[1] Northwestern Polytech Univ China, Sch Elect & Informat, Xian, Shaanxi, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[3] Xian Univ Technol, Xian, Shaanxi, Peoples R China
[4] IEEE, Piscataway, NJ 08854 USA
基金
中国国家自然科学基金;
关键词
Ellipse fitting; Outlier; Alternating direction method of multipliers (ADMM); Nonlinear optimization; Nonconvex optimization; Ellipse parameter vector; ALGORITHM; SEGMENTATION; OPTIMIZATION; PARAMETERS; CIRCLE;
D O I
10.1016/j.sigpro.2019.05.032
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The edge point errors, especially outliers, introduced in the edge detection step, will cause severe performance degradation in ellipse fitting. To address this problem, we adopt the l(p)-norm with p < 2 in the direct least square fitting method to achieve outlier resistance, and develop a robust ellipse fitting approach using the alternating direction method of multipliers (ADMM). Especially, to solve the formulated nonconvex and nonlinear problem, we decouple the ellipse parameter vector in the nonlinear l(p)-norm objective function from the nonconvex quadratic constraint via introducing auxiliary variables, and estimate the ellipse parameter vector and auxiliary variables alternately via the derived numerical methods. Simulation and experimental examples are presented to demonstrate the robustness of the proposed approach. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 40
页数:11
相关论文
共 50 条
  • [1] Image restoration via robust alternating direction method of multipliers
    Wu, Yue
    Zeng, Xiangrong
    Zhou, Dianle
    Liu, Yan
    Zhou, Jiaqing
    Zhou, Jinglun
    [J]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2018, 40 (02): : 112 - 118
  • [2] Robust and Sparse Linear Discriminant Analysis via an Alternating Direction Method of Multipliers
    Li, Chun-Na
    Shao, Yuan-Hai
    Yin, Wotao
    Liu, Ming-Zeng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 915 - 926
  • [3] Phase Retrieval via the Alternating Direction Method of Multipliers
    Liang, Junli
    Stoica, Petre
    Jing, Yang
    Li, Jian
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (01) : 5 - 9
  • [4] Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization
    Gao, Hao
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (07): : 2838 - 2850
  • [5] Robust Fluence Map Optimization Via Alternating Direction Method of Multipliers with Automatic Parameter Optimization
    Gao, H.
    [J]. MEDICAL PHYSICS, 2015, 42 (06) : 3493 - 3493
  • [6] Fast Multidimensional Ellipsoid-Specific Fitting by Alternating Direction Method of Multipliers
    Lin, Zhouchen
    Huang, Yameng
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (05) : 1021 - 1026
  • [7] Sparse feedback synthesis via the alternating direction method of multipliers
    Lin, Fu
    Fardad, Makan
    Jovanovic, Mihailo R.
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 4765 - 4770
  • [8] Simultaneous Declipping and Beamforming via Alternating Direction Method of Multipliers
    Masuyama, Yoshiki
    Tanaka, Tomoro
    Yatabe, Kohei
    Kusano, Tsubasa
    Oikawa, Yasuhiro
    [J]. 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 316 - 320
  • [9] Fourier Ptychographic Microscopy via Alternating Direction Method of Multipliers
    Wang, Aiye
    Zhang, Zhuoqun
    Wang, Siqi
    Pan, An
    Ma, Caiwen
    Yao, Baoli
    [J]. CELLS, 2022, 11 (09)
  • [10] Distributed Event Localization via Alternating Direction Method of Multipliers
    Zhang, Chunlei
    Wang, Yongqiang
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2018, 17 (02) : 348 - 361