Solar image parameter data from the SDO: Long-term curation and data mining

被引:6
|
作者
Schuh, M. A. [1 ]
Angryk, R. A. [2 ]
Martens, P. C. [3 ]
机构
[1] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
[2] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30302 USA
[3] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA
基金
美国国家科学基金会;
关键词
Solar images; Computer vision; Data analysis; Data mining; Big data; SYSTEMS;
D O I
10.1016/j.ascom.2015.10.004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Solar Dynamics Observatory (SDO) mission captures thousands of images of the Sun per day, motivating the need for efficient and effective storage, representation, and search over a massive repository of data. This work investigates the general-purpose image parameter data produced by the SDO Feature Finding Team's trainable module, which operates at a fixed six minute cadence over all AIA channels. The data contains ten numerical measures computed for each image cell over a 64 x 64 grid for each image. We analyze all available data and metadata produced over the first three years and present comprehensive statistics and outliers while validating the cleanliness and usability of the data source for future research. We then utilize a database of automated solar event reports to create large-scale region-labeled datasets available to the public. We highlight the new-found potential for data-driven discovery by presenting several best-case labeling scenarios that establish a baseline for comparing machine learning classification and attribute (image parameter) evaluation results. Future work focuses on continued dataset curation and spatiotemporal data mining. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 98
页数:13
相关论文
共 50 条
  • [1] Data Mining in Long-Term Honeypot Data
    Fraunholz, Daniel
    Zimmermann, Marc
    Hafner, Alexander
    Schotten, Hans D.
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 649 - 656
  • [2] Data mining: A long-term dream
    Waltz, D
    Hong, SJ
    [J]. IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1999, 14 (06): : 30 - 31
  • [3] Data mining: A long-term dream continues
    Waltz, D
    Hong, SJ
    [J]. IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 2000, 15 (02): : 33 - 33
  • [4] Value of long-term solar radiation data
    Vignola, F.
    McDaniels, D.K.
    [J]. Journal of Chemical Physics, 1994, 100 (07):
  • [5] Data Mining in the Age of Curation
    Abe, Akinori
    [J]. 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 273 - 279
  • [6] Data mining considering curation
    Abe, Akinori
    [J]. 2014 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 2, 2014, : 386 - 391
  • [7] Parameter estimation in regression for long-term survival rate from censored data
    Subramanian, S
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 99 (02) : 211 - 222
  • [8] Abstraction of long-term changed tests in mining hepatitis data
    Kawasaki, S
    Ho, TB
    Nguyen, DT
    [J]. KNOWLEDGE-BASED INTELLIGNET INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2003, 2774 : 366 - 372
  • [9] Long-term variations of solar magnetic fields derived from geomagnetic data
    Georgieva, K.
    Kirov, B.
    Nagovitsyn, Yu A.
    [J]. GEOMAGNETISM AND AERONOMY, 2013, 53 (07) : 852 - 856
  • [10] Long-term variations of solar magnetic fields derived from geomagnetic data
    K. Georgieva
    B. Kirov
    Yu. A. Nagovitsyn
    [J]. Geomagnetism and Aeronomy, 2013, 53 : 852 - 856