A characterization of nonhomogeneous wavelet bi-frames for reducing subspaces of Sobolev spaces

被引:4
|
作者
Jia, Hui-Fang [1 ]
Zhang, Jianping [2 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030002, Shanxi, Peoples R China
[2] Yanan Univ, Coll Math & Comp Sci, Yanan 716000, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonhomogeneous wavelet system; Reducing subspace; Sobolev space; Nonhomogeneous wavelet bi-frames;
D O I
10.1186/s13660-021-02586-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For nonhomogeneous wavelet bi-frames in a pair of dual spaces (H-s(R-d), H-s(R-d)) with s not equal 0, smoothness and vanishing moment requirements are separated from each other, that is, one system is for smoothness and the other one for vanishing moments. This gives us more flexibility to construct nonhomogeneous wavelet bi-frames than in L-2(R-d). In this paper, we introduce the reducing subspaces of Sobolev spaces, and characterize the nonhomogeneous wavelet bi-frames under the setting of a general pair of dual reducing subspaces of Sobolev spaces.
引用
收藏
页数:16
相关论文
共 50 条