Approximating Hypervolume and Hypervolume Contributions Using Polar Coordinate

被引:37
|
作者
Deng, Jingda [1 ]
Zhang, Qingfu [1 ]
机构
[1] City Univ Hong Kong, Coll Sci & Engn, Dept Comp Sci, Hong Kong, Peoples R China
关键词
Approximation methods; Approximation algorithms; Monte Carlo methods; Manganese; Pareto optimization; Transforms; hypervolume; hypervolume contribution; multiobjective optimization; EVOLUTIONARY ALGORITHMS;
D O I
10.1109/TEVC.2019.2895108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The hypervolume and hypervolume contributions are widely used in multiobjective evolutionary optimization. However, their exact calculation is NP-hard. By definition, hypervolume is anis the number of objectives). Using polar coordinate, this paper transforms the hypervolume into an -D integral, and then proposes two approximation methods for computing the hypervolume and hypervolume contributions. Numerical experiments have been conducted to investigate the performance of our proposed methods.
引用
收藏
页码:913 / 918
页数:6
相关论文
共 50 条
  • [1] An Efficient Algorithm for Computing Hypervolume Contributions
    Bringmann, Karl
    Friedrich, Tobias
    [J]. EVOLUTIONARY COMPUTATION, 2010, 18 (03) : 383 - 402
  • [2] Updating Exclusive Hypervolume Contributions Cheaply
    Bradstreet, Lucas
    Barone, Luigi
    While, Lyndon
    [J]. 2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 538 - 544
  • [3] Combining Simple and Adaptive Monte Carlo Methods for Approximating Hypervolume
    Deng, Jingda
    Zhang, Qingfu
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (05) : 896 - 907
  • [4] Don't be Greedy when Calculating Hypervolume Contributions
    Bringmann, Karl
    Friedrich, Tobias
    [J]. FOGA'09: PROCEEDINGS OF THE 10TH ACM SIGRVO CONFERENCE ON FOUNDATIONS OF GENETIC ALGORITHMS, 2009, : 103 - 112
  • [5] Computing and Updating Hypervolume Contributions in Up to Four Dimensions
    Guerreiro, Andreia P.
    Fonseca, Carlos M.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (03) : 449 - 463
  • [6] Quick Hypervolume
    Russo, Luis M. S.
    Francisco, Alexandre P.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) : 481 - 502
  • [7] Computing representations using hypervolume scalarizations
    Paquete, Luis
    Schulze, Britta
    Stiglmayr, Michael
    Lourenco, Ana C.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2022, 137
  • [8] Transformation-based Hypervolume Indicator: A Framework for Designing Hypervolume Variants
    Shang, Ke
    Ishibuchi, Hisao
    Nan, Yang
    Chen, Weiyu
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 157 - 164
  • [9] Approximating the least hypervolume contributor: NP-hard in general, but fast in practice
    Bringmann, Karl
    Friedrich, Tobias
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 425 : 104 - 116
  • [10] The Logarithmic Hypervolume Indicator
    Friedrich, Tobias
    Bringmann, Karl
    Voss, Thomas
    Igel, Christian
    [J]. FOGA 11: PROCEEDINGS OF THE 2011 ACM/SIGEVO FOUNDATIONS OF GENETIC ALGORITHMS XI, 2011, : 81 - 91