Integrating Biological Context into the Analysis of Gene Expression Data

被引:1
|
作者
Perscheid, Cindy [1 ]
Uflacker, Matthias [1 ]
机构
[1] Univ Potsdam, Hasso Plattner Inst, Potsdam, Germany
关键词
Gene expression; Machine learning; Feature selection; Association rule mining; Biclustering; Knowledge bases; DNA-MICROARRAY; SELECTION;
D O I
10.1007/978-3-319-99608-0_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-throughput RNA sequencing produces large gene expression datasets whose analysis leads to a better understanding of diseases like cancer. The nature of RNA-Seq data poses challenges to its analysis in terms of its high dimensionality, noise, and complexity of the underlying biological processes. Researchers apply traditional machine learning approaches, e. g. hierarchical clustering, to analyze this data. Until it comes to validation of the results, the analysis is based on the provided data only and completely misses the biological context. However, gene expression data follows particular patterns - the underlying biological processes. In our research, we aim to integrate the available biological knowledge earlier in the analysis process. We want to adapt state-of-the-art data mining algorithms to consider the biological context in their computations and deliver meaningful results for researchers.
引用
收藏
页码:339 / 343
页数:5
相关论文
共 50 条
  • [1] Integrating Biological Heuristics and Gene Expression Data for Gene Regulatory Network Inference
    Zarnegar, Armita
    Jelinek, Herbert F.
    Vamplew, Peter
    Stranieri, Andrew
    [J]. PROCEEDINGS OF THE AUSTRALASIAN COMPUTER SCIENCE WEEK MULTICONFERENCE (ACSW 2019), 2019,
  • [2] Caleydo: Design and Evaluation of a Visual Analysis Framework for Gene Expression Data in its Biological Context
    Lex, Alexander
    Streit, Marc
    Kruijff, Ernst
    Schmalstieg, Dieter
    [J]. IEEE PACIFIC VISUALIZATION SYMPOSIUM 2010, 2010, : 57 - 64
  • [3] Integrating biological knowledge based on functional annotations for biclustering of gene expression data
    Nepomuceno, Juan A.
    Troncoso, Alicia
    Nepomuceno-Chamorro, Isabel A.
    Aguilar-Ruiz, Jesus S.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 119 (03) : 163 - 180
  • [4] Classification by integrating plant stress response gene expression data with biological knowledge
    Meng, Jun
    Li, Rui
    Luan, Yushi
    [J]. MATHEMATICAL BIOSCIENCES, 2015, 266 : 65 - 72
  • [5] Integrative Gene Selection on Gene Expression Data: Providing Biological Context to Traditional Approaches
    Perscheid, Cindy
    Grasnick, Bastien
    Uflacker, Matthias
    [J]. JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2019, 16 (01)
  • [6] Integrating gene regulatory pathways into differential network analysis of gene expression data
    Grimes, Tyler
    Potter, S. Steven
    Datta, Somnath
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Integrating gene regulatory pathways into differential network analysis of gene expression data
    Tyler Grimes
    S. Steven Potter
    Somnath Datta
    [J]. Scientific Reports, 9
  • [8] Integrating gene and protein expression data: pattern analysis and profile mining
    Cox, B
    Kislinger, T
    Emili, A
    [J]. METHODS, 2005, 35 (03) : 303 - 314
  • [9] Computational proteomics: Integrating mass spectral data into a biological context
    Carvalho, Paulo C.
    Padron, Gabriel
    Calvete, Juan J.
    Perez-Riverol, Yasset
    [J]. JOURNAL OF PROTEOMICS, 2015, 129 : 1 - 2
  • [10] Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data
    Ruebel, Oliver
    Weber, Gunther H.
    Huang, Min-Yu
    Bethel, E. Wes
    Biggin, Mark D.
    Fowlkes, Charless C.
    Hendriks, Cris L. Luengo
    Keraenen, Soile V. E.
    Eisen, Michael B.
    Knowles, David W.
    Malik, Jitendra
    Hagen, Hans
    Hamann, Bernd
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2010, 7 (01) : 64 - 79