Robust estimation of location and concentration parameters for the von Mises-Fisher distribution

被引:16
|
作者
Kato, Shogo [1 ]
Eguchi, Shinto [1 ]
机构
[1] Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
基金
日本科学技术振兴机构;
关键词
Directional data; Divergence; Influence function; Outlier detection; Robust inference; DIRECTIONAL-DATA; DIVERGENCE; SPHERE;
D O I
10.1007/s00362-014-0648-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Robust estimation of location and concentration parameters for the von Mises-Fisher distribution is discussed. A key reparametrisation is achieved by expressing the two parameters as one vector on the Euclidean space. With this representation, we first show that maximum likelihood estimator for the von Mises-Fisher distribution is not robust in some situations. Then we propose two families of robust estimators which can be derived as minimisers of two density power divergences. The presented families enable us to estimate both location and concentration parameters simultaneously. Some properties of the estimators are explored. Simple iterative algorithms are suggested to find the estimates numerically. It is shown that the presented approaches can be utilised to estimate either the location or concentration parameter. A comparison with the existing robust estimators is given as well as discussion on difference and similarity between the two proposed estimators. A simulation study is made to evaluate finite sample performance of the estimators. We apply the proposed methods to a sea star dataset and discuss the selection of the tuning parameters and outlier detection.
引用
收藏
页码:205 / 234
页数:30
相关论文
共 50 条
  • [1] Robust estimation of location and concentration parameters for the von Mises–Fisher distribution
    Shogo Kato
    Shinto Eguchi
    [J]. Statistical Papers, 2016, 57 : 205 - 234
  • [2] Von Mises-Fisher Elliptical Distribution
    Li, Shengxi
    Mandic, Danilo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 11006 - 11012
  • [4] Parameter estimation for von Mises-Fisher distributions
    Tanabe, Akihiro
    Fukumizu, Kenji
    Oba, Shigeyuki
    Takenouchi, Takashi
    Ishii, Shin
    [J]. COMPUTATIONAL STATISTICS, 2007, 22 (01) : 145 - 157
  • [5] On maximum likelihood estimation of the concentration parameter of von Mises-Fisher distributions
    Hornik, Kurt
    Gruen, Bettina
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (05) : 945 - 957
  • [6] A new extension of von Mises-Fisher distribution
    Moghimbeygi, Meisam
    Golalizadeh, Mousa
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (06): : 1838 - 1854
  • [7] Cooperative Heading Estimation with von Mises-Fisher Distribution and Particle Filtering
    Makela, Maija
    Kirkko-Jaakkola, Martti
    Hammarberg, Toni
    Malkamaki, Tuomo
    Rantanen, Jesperi
    Kaasalainen, Sanna
    [J]. 2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [8] Discriminant Analysis for the von Mises-Fisher Distribution
    Figueiredo, Adelaide
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (09) : 1991 - 2003
  • [9] Efficient von Mises-Fisher concentration parameter estimation using Taylor series
    Christie, David
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (16) : 3259 - 3265
  • [10] Remarks on a parameter estimation for von Mises-Fisher distributions
    Baricz, Arpad
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 891 - 894