Detecting high indoor crowd density with Wi-Fi localization: a statistical mechanics approach

被引:13
|
作者
Georgievska, Sonja [1 ]
Rutten, Philip [2 ]
Amoraal, Jan [4 ]
Ranguelova, Elena [1 ]
Bakhshi, Rena [1 ]
de Vries, Ben L. [1 ]
Lees, Michael [2 ,3 ]
Klous, Sander [2 ,4 ]
机构
[1] Netherlands eSci Ctr, Sci Pk 140, Amsterdam, Netherlands
[2] Univ Amsterdam, Sci Pk 904, Amsterdam, Netherlands
[3] ITMO Univ, St Petersburg, Russia
[4] KPMG, Laan Langerhuize 1, Amstelveen, Netherlands
关键词
Big data analytics; Crowd density estimation; Probabilistic modeling; Indoor Wi-Fi localization; BLUETOOTH; BEHAVIOR;
D O I
10.1186/s40537-019-0194-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We address the problem of detecting highly raised crowd density in situations such as indoor dance events. We propose a new method for estimating crowd density by anonymous, non-participatory, indoor Wi-Fi localization of smart phones. Using a probabilistic model inspired by statistical mechanics, and relying only on big data analytics, we tackle three challenges: (1) the ambiguity of Wi-Fi based indoor positioning, which appears regardless of whether the latter is performed with machine learning or with optimization, (2) the MAC address randomization when a device is not connected, and (3) the volatility of packet interarrival times. The main result is that our estimation becomes more-rather than less-accurate when the crowd size increases. This property is crucial for detecting dangerous crowd density.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Detecting high indoor crowd density with Wi-Fi localization: a statistical mechanics approach
    Sonja Georgievska
    Philip Rutten
    Jan Amoraal
    Elena Ranguelova
    Rena Bakhshi
    Ben L. de Vries
    Michael Lees
    Sander Klous
    [J]. Journal of Big Data, 6
  • [2] Wisual: Indoor Crowd Density Estimation and Distribution Visualization Using Wi-Fi
    Ma, Xiaoyu
    Xi, Wei
    Zhao, Xinyu
    Chen, Zuhao
    Zhang, Hui
    Zhao, Jizhong
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 10077 - 10092
  • [3] Indoor Crowd Density Estimation Through Mobile Smartphone Wi-Fi Probes
    Tang, Xiaoyong
    Xiao, Bin
    Li, Kenli
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (07): : 2638 - 2649
  • [4] Wi-Fi DSAR: Wi-Fi based Indoor Localization using Denoising Supervised Autoencoder
    Wang, Yun-Hao
    Yang, Ta-Wei
    Chou, Cheng-Fu
    Chang, Ing-Chau
    [J]. 2021 30TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC 2021), 2021, : 188 - 192
  • [5] Tracking of Proxy RP in Wi-Fi Based Indoor Localization of a Wi-Fi Mobile Device
    Bong, Wonsun
    Park, Injun
    Kim, Yong Cheol
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2011, 14 (05): : 1425 - 1438
  • [6] SAP Dissimilarity based High Performance Wi-Fi Indoor Localization
    Gu, Yang
    Chen, Yiqiang
    Liu, Junfa
    Jiang, Xinlong
    [J]. PROCEEDINGS OF THE 2014 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING (UBICOMP'14 ADJUNCT), 2014, : 55 - 58
  • [7] Indoor Localization based on Hybrid Wi-Fi Hotspots
    Xu, Xiaolong
    Tang, Yu
    Li, Shanchang
    [J]. 2017 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2017,
  • [8] Wi-Fi/MARG Integration for Indoor Pedestrian Localization
    Tian, Zengshan
    Jin, Yue
    Zhou, Mu
    Wu, Zipeng
    Li, Ze
    [J]. SENSORS, 2016, 16 (12) : 1 - 24
  • [9] Efficient Wi-Fi Fingerprint Crowdsourcing for Indoor Localization
    Wei, Yongyong
    Zheng, Rong
    [J]. IEEE SENSORS JOURNAL, 2022, 22 (06) : 5055 - 5062
  • [10] Secure and Robust Wi-Fi Fingerprinting Indoor Localization
    Meng, Wei
    Xiao, Wendong
    Ni, Wei
    Xie, Lihua
    [J]. 2011 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION, 2011,