Network-aided Bi-Clustering for discovering cancer subtypes

被引:11
|
作者
Yu, Guoxian [1 ]
Yu, Xianxue [1 ]
Wang, Jun [1 ]
机构
[1] Southwest Univ, Coll Comp & Informat Sci, Chongqing, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
GENE-EXPRESSION DATA; BICLUSTERING ALGORITHMS; MICROARRAY;
D O I
10.1038/s41598-017-01064-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bi-clustering is a widely used data mining technique for analyzing gene expression data. It simultaneously groups genes and samples of an input gene expression data matrix to discover bi-clusters that relevant samples exhibit similar gene expression profiles over a subset of genes. The discovered bi-clusters bring insights for categorization of cancer subtypes, gene treatments and others. Most existing bi-clustering approaches can only enumerate bi-clusters with constant values. Gene interaction networks can help to understand the pattern of cancer subtypes, but they are rarely integrated with gene expression data for exploring cancer subtypes. In this paper, we propose a novel method called Network-aided Bi-Clustering (NetBC). NetBC assigns weights to genes based on the structure of gene interaction network, and it iteratively optimizes sum-squared residue to obtain the row and column indicative matrices of bi-clusters by matrix factorization. NetBC can not only efficiently discover bi-clusters with constant values, but also bi-clusters with coherent trends. Empirical study on large-scale cancer gene expression datasets demonstrates that NetBC can more accurately discover cancer subtypes than other related algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Network-aided Bi-Clustering for discovering cancer subtypes
    Guoxian Yu
    Xianxue Yu
    Jun Wang
    Scientific Reports, 7
  • [2] Network Regularized Bi-Clustering for Cancer Subtype Categorization
    Wang X.
    Wang J.
    Yu G.-X.
    Guo M.-Z.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (06): : 1274 - 1288
  • [3] Network inference with ensembles of bi-clustering trees
    Pliakos, Konstantinos
    Vens, Celine
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [4] Network inference with ensembles of bi-clustering trees
    Konstantinos Pliakos
    Celine Vens
    BMC Bioinformatics, 20
  • [5] On approximate balanced bi-clustering
    Ma, GX
    Peng, JM
    Wei, Y
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2005, 3595 : 661 - 670
  • [6] The Application of Bi-clustering and Bayesian Network for Gene Sets Network Construction in Breast Cancer Microarray Data
    Sohrabi, Ahmad
    Saraygord-Afshari, Neda
    Roudbari, Masoud
    MIDDLE EAST JOURNAL OF CANCER, 2022, 13 (04) : 624 - 640
  • [7] CoPath: discovering cooperative driver pathways using greedy mutual exclusivity and bi-clustering
    Yang, Ziying
    Yu, Guoxian
    Yu, Jiantao
    Guo, Maozu
    Wang, Jun
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 165 - 170
  • [8] Consensus Algorithm for Bi-clustering Analysis
    Foszner, Pawel
    Labaj, Wojciech
    Polanski, Andrzej
    Staniszewski, Michal
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 557 - 570
  • [9] Bi-clustering based recommendation system
    Mali, Mahesh
    Mishra, Dhirendra
    Vijayalaxmi, M.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (04): : 1029 - 1039
  • [10] A bi-clustering framework for categorical data
    Pensa, RG
    Robardet, C
    Boulicaut, JF
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2005, 2005, 3721 : 643 - 650