An approximate Bayesian approach for quantitative trait loci estimation

被引:0
|
作者
Chang, Yu-Ling [1 ]
Zou, Fei [1 ]
Wright, Fred A. [1 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
关键词
CHAIN MONTE-CARLO;
D O I
10.1016/j.csda.2009.09.029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian approaches have been widely used in quantitative trait locus (QTL) linkage analysis in experimental crosses, and have advantages in interpretability and in constructing parameter probability intervals. Most existing Bayesian linkage methods involve Monte Carlo sampling, which is computationally prohibitive for high-throughput applications such as eQTL analysis. In this paper, we present a Bayesian linkage model that offers directly interpretable posterior densities or Bayes factors for linkage. For our model, we employ the Laplace approximation for integration over nuisance parameters in backcross (BC) and F2 intercross designs. Our approach is highly accurate, and very fast compared with alternatives, including grid search integration, importance sampling, and Markov Chain Monte Carlo (MCMC). Our approach is thus suitable for high-throughput applications. Simulated and real datasets are used to demonstrate our proposed approach. Published by Elsevier B.V.
引用
收藏
页码:565 / 574
页数:10
相关论文
共 50 条
  • [1] Bayesian point estimation of quantitative trait loci
    Sisson, SA
    Hurn, MA
    [J]. BIOMETRICS, 2004, 60 (01) : 60 - 68
  • [2] Bayesian shrinkage estimation of quantitative trait loci parameters
    Wang, H
    Zhang, YM
    Li, XM
    Masinde, GL
    Mohan, S
    Baylink, DJ
    Xu, SZ
    [J]. GENETICS, 2005, 170 (01) : 465 - 480
  • [3] Bayesian LASSO for quantitative trait loci mapping
    Yi, Nengjun
    Xu, Shizhong
    [J]. GENETICS, 2008, 179 (02) : 1045 - 1055
  • [4] Multitrait analysis of quantitative trait loci using Bayesian composite space approach
    Ming Fang
    Dan Jiang
    Li Jun Pu
    Hui Jiang Gao
    Peng Ji
    Hong Yi Wang
    Run Qing Yang
    [J]. BMC Genetics, 9
  • [5] Multitrait analysis of quantitative trait loci using Bayesian composite space approach
    Fang, Ming
    Jiang, Dan
    Pu, Li Jun
    Gao, Hui Jiang
    Ji, Peng
    Wang, Hong Yi
    Yang, Run Qing
    [J]. BMC GENETICS, 2008, 9 (1)
  • [6] Bayesian methods for quantitative trait loci mapping based on model selection: Approximate analysis using the Bayesian information criterion
    Ball, RD
    [J]. GENETICS, 2001, 159 (03) : 1351 - 1364
  • [7] Quantitative trait loci analysis using a Bayesian framework
    Boone, Edward L.
    Ricanek, Karl, Jr.
    Sirnmons, Susan J.
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 760 - +
  • [8] Bayesian quantitative trait loci mapping for multiple traits
    Banerjee, Samprit
    Yandell, Brian S.
    Yi, Nengjun
    [J]. GENETICS, 2008, 179 (04) : 2275 - 2289
  • [9] Bayesian diagnostic analysis for quantitative trait loci mapping
    Zuanetti, Daiane A.
    Pavan Soler, Julia M.
    Krieger, Jose E.
    Milan, Luis A.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (08) : 2238 - 2249
  • [10] Mapping multiple quantitative trait loci by Bayesian classification
    Zhang, M
    Montooth, KL
    Wells, MT
    Clark, AG
    Zhang, DB
    [J]. GENETICS, 2005, 169 (04) : 2305 - 2318