Coherence on Fractals Versus Pointwise Convergence for the Schrodinger Equation

被引:35
|
作者
Luca, Renato [1 ]
Rogers, Keith M. [1 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
关键词
DIVERGENCE SETS;
D O I
10.1007/s00220-016-2722-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Carleson's problem regarding convergence for the Schrodinger equation in dimensions d >= 2. We show that if the solution converges almost everywhere with respect to alpha-Hausdorff measure to its initial datum as time tends to zero, for all data H-s (R-d), then s >= d/2(d+2)( d + 1 - alpha). This strengthens and generalises results of Bourgain and Dahlberg-Kenig.
引用
收藏
页码:341 / 359
页数:19
相关论文
共 50 条
  • [1] Coherence on Fractals Versus Pointwise Convergence for the Schrödinger Equation
    Renato Lucà
    Keith M. Rogers
    Communications in Mathematical Physics, 2017, 351 : 341 - 359
  • [2] Convergence over Fractals for the Schrodinger Equation
    Luca, Renato
    Ponce-Vanegas, Felipe
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (06) : 2283 - 2307
  • [3] CONVERGENCE OVER FRACTALS FOR THE PERIODIC SCHRODINGER EQUATION
    Eceizabarrena, Daniel
    Luca, Renato
    ANALYSIS & PDE, 2022, 15 (07): : 1775 - 1805
  • [4] Pointwise Convergence of Solutions to the Schrodinger Equation on Manifolds
    Wang, Xing
    Zhang, Chunjie
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (04): : 983 - 995
  • [5] Pointwise convergence of solutions to the nonelliptic Schrodinger equation
    Rogers, Keith M.
    Vargas, Ana
    Vega, Luis
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (06) : 1893 - 1906
  • [6] Problems on Pointwise Convergence of Solutions to the Schrodinger Equation
    Cho, Chu-Hee
    Lee, Sanghyuk
    Vargas, Ana
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (05) : 972 - 994
  • [7] Dimension of divergence sets for the pointwise convergence of the Schrodinger equation
    Cho, Chu-Hee
    Lee, Sanghyuk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (01) : 254 - 260
  • [8] Pointwise Convergence of the Fractional Schrodinger Equation in R2
    Cho, Chu-Hee
    Ko, Hyerim
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (01): : 177 - 200
  • [9] Pointwise Convergence Along Restricted Directions for the Fractional Schrodinger Equation
    Shiraki, Shobu
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [10] ON POINTWISE CONVERGENCE OF SCHRoDINGER MEANS
    Dimou, Evangelos
    Seeger, Andreas
    MATHEMATIKA, 2020, 66 (02) : 356 - 372